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Abstract

Precipitation is the most important component and critical to the study of water and energy cycle. In this study we inves-
tigated the propagation of precipitation retrieval uncertainty in the simulation of hydrological variables, such as soil  
moisture, temperature, runoff, and fluxes, for varying spatial resolution on different vegetation cover. Two remotely sensed 
rain retrievals were explored (one based on satellite IR-only data and the other one based on ground radar data) and three 
spatial grid resolutions: 0.25°, 0.5° and 1.0°. This investigation was facilitated by an offline Community Land Model (CLM) 
which is forced by in situ meteorological data from Oklahoma Mesonet and high-resolution (0.1

o
/hourly) rain gauge-cali-

brated WSR-88D radar (Nexrad) based precipitation fields.  In turn, radar rainfall is replaced by the satellite rain estimates 
at coarser resolution (0.25°, 0.5° and 1°) to determine their impact on model predictions. A fundamental assumption made 
in this study is that CLM can adequately represent the physical land surface processes. Results show how uncertainty of 
precipitation measurement affects the spatial variability of model output in various modelling scales. The study provides 
some information on the uncertainty of hydrological prediction via interaction between the land surface and near atmosphere 
fluxes in the modelling approach and hopefully it will contribute to water resource redistribution due to climate change in 
the Korean Peninsula. 
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Introduction

The change and redistribution of water resources due to climate 
change are of main interest in the hydrological society and the 
Korean Peninsula is no exception. 
 Traditionally the long-term climate was regarded as 
unchanging during the normal lifetime of water resource sys-
tems. But significant changes in greenhouse-effect gases and 
their likely effects on temperature and other climate variables, 
especially precipitation, have suggested that climate change 
needs to be considered in water resource planning (Maidment, 
1992). The dominant approach was to use a sensitivity analysis 
and examine the differences according to climate change in a 
system. A physically based numerical modelling approach has 
been an alternative to studying the effect of climate change on 
the regional and global water resource budget.
 Land surface-atmosphere interaction processes such as 
evaporation from bare soil or from soil beneath vegetation, infil-
tration into the soil, and surface runoff are important aspects 
for weather/climate forecasting and these features are control-
led by surface variables such as soil moisture and temperature, 
soil texture, biomass, surface roughness, and, most importantly, 
meteorological condition. Precipitation as a driving force is 
arguably the most important component of the land-vegeta-
tion-atmosphere system accountable for shaping the state of the  
climate and variability of water in the hydrological cycle. Thus,  
correct precipitation estimation is crucial in the land-atmosphere 

interaction. There have been some attempts to predict temporal 
and spatial variation of precipitation using a physically based 
atmospheric modelling approach but it is unfortunate that the 
atmospheric modelling approach is not satisfactory. Quantita-
tive precipitation information is important in the evaluation of 
the simulation data and/or initialisation and/or assimilation of 
the land surface and atmospheric modelling approach. However, 
the existing quantitative precipitation information is scarce, 
which leads to frustration for the hydrologist and atmospheric 
scientist. Recently, the remote sensing technique is being seen 
as a promising tool for large-scale precipitation observation and 
studies have been successfully conducted in this field. This tech-
nique is especially promising for undeveloped countries where 
there have not been many observations. 
 In general there are several factors that affect the modelling 
results (Arnaud et al, 2002), namely the physical structure of the 
model; the model parameters; the numerical resolution; and the 
accuracy of input data. The choice of the precipitation retrieval 
data to be used is the first step in land-surface simulation study 
and the choice is often made on a largely subjective and intuitive 
basis.
 The impact of precipitation retrieval error on the simulation 
of hydrological variables (hereafter called error propagation) 
has been the subject of a number of studies (Sharif et al., 2002; 
Borga et al., 2000).  These studies by Borga et al. and Sharif et 
al. focused on error propagation in runoff prediction driven by 
radar rainfall observations. Guo et al. (2004) intensively inves-
tigated the spatial variability of the radar-based precipitation 
measurement and showed the impacts of the different precipi-
tation sources (radar- and ground-based measurement) based 
on the modelling approach. Yu et al. (1999) simulated stream-
flow with a model-derived and observed precipitation and they  
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concluded that the simulated streamflow with the model-derived 
precipitation is lower than that with observed precipitation. 
Most of the aforementioned studies have focused on the effect of 
remotely sensed precipitation sampling error on the simulation 
of hydrological variables. 
 It is also noted that a given storm may produce different 
hydrological outputs depending on the choice of the numerical 
design such as spatial and temporal resolution. Accordingly, 
another critical aspect when using precipitation data in land 
surface models is the need to resolve the precipitation variabil-
ity at high spatial and temporal scale. These factors may have a 
large influence on the water and energy budget. Lee and Anag-
nostou (2004) recently investigated the non-linear hydrological 
response to precipitation forcing with emphasis on the tempo-
ral scaling in physically based land surface modelling. They 
showed that the temporal pattern of precipitation observations is 
noticeably different in the different remote sensing observations 
and the responses of hydrological variables to different input  
precipitation are non-linearly dependent on the pattern of pre-
cipitation. Some of the studies on error propagation are based 
on the numerical modelling experiment where the precipita-
tion input is simulated according to some error distribution  
characterising the sensor retrieval uncertainty. However, not 
much work has been done on understanding the effect of the 
retrieval uncertainty using actual remote sensing data (Lee and 
Anagnostou, 2004). Also many studies have been confined to 
investigating the surface precipitation-runoff relations.
 In this study we investigate the non-linear effect of precipi-
tation retrieval on the simulation of land surface hydrological 
parameters and its dependence on spatial scales. We compare 
the prognostic hydrological output forced by the precipitation 
estimate from two typical remote sensing platforms (i.e., ground 
radar and geo-stationary satellite IR) with coincident grid-
averaged rainfall data measured by a dense cluster of gauges. 
We evaluate difference statistics (in terms of rainfall and the 
various simulated land surface parameters) between the remote 
sensing IR rainfall retrievals and grid-averaged radar rainfall 
(considered as a reference in this study). 

Land surface model

On the basis of externally forcing data (precipitation, radiation, 
wind speed, air temperature, and humidity) the land surface 
model generally computes a number of prognostic variables that 
include runoff, soil moisture, temperature in the soil layer, water 
intercepted on the canopy, leaf temperature, latent heat flux, and 
sensible heat flux. The ancillary soil and vegetation data, used 
to specify the nature and characteristics of the surface cover, are 
mostly given as prescribed input data. The Community Land 
Model (CLM-Version 2) chosen in this study is a one-dimen-
sional land surface model developed and supported by a diverse 
group of scientists. It is freely available to the research com-
munity.  CLM is based on the Bonan (1996) land surface model, 
which was modified to incorporate the best features of BATS 
(biosphere-atmosphere transfer scheme) (Dickinson et al., 1986) 
and the IAP94 land surface model (Dai and Zeng, 1997). The soil 
and vegetation data, used to specify the nature and characteris-
tics of the surface cover, are mostly derived from space-borne 
remote sensing observations.  CLM has one vegetation layer as 
in most land surface models, 10 unevenly spaced vertical soil 
layers with variable hydraulic conductivity, and up to 5 snow 
layers depending on the total snow depth.  The surface grid cell 
can be subdivided into a number of tiles that consist of a single 
type of land cover; the model performs the water and energy 

balance calculations over each tile at every time step.  Most sur-
face processes such as evaporation from the ground, transpira-
tion from the plants’ rooting zone, soil and snow water propa-
gation, leaf temperature and fluxes, soil and snow temperature, 
and phase change are parameterised through physical-empirical 
equations.  The parameterisation of runoff-related processes is 
based on the TOPMODEL concept (Beven and Kirkby, 1979). 
General hydrological processes for CLM are shown in Fig. 1.

Study region and field data

The study region covers two 1° grid areas in Oklahoma associated 
with distinct vegetation cover.  The latitude/longitude centres of 
the sparsely vegetated (hereafter called HOLL) and highly veg-
etated (hereafter called SALL) 1° sites are 34.6861N/99.8339W 
and 35.4360N/94.7740W, respectively.  The sites include five 
and three MESONET stations, respectively.  The dominant veg-
etation types for both study sites are non-arctic grass (Type 13 
in CLM) and broadleaf deciduous temperate trees (Type 7 in 
CLM), respectively.  The soil textures for HOLL (SALL) are 
sand and clay at 47% (54%) and 19% (23%) coverage, respec-
tively.  The average leaf area index (LAI) for HOLL and SALL 
in June is 1.3 and 5.3, respectively.
 As mentioned earlier, two types of data are generally needed 
to run a land surface scheme: land surface characteristics and 
meteorological forcing data.  In CLM, the land surface data 
include vegetation cover type, vegetation fraction, monthly 
leaf and stem area index, canopy top and bottom heights, and 
soil texture and colour.  Those data are available at 1km spatial 
resolution and mostly derived from space-borne remote sensing 
observations such as the IGBP DISCover dataset (Loveland et 
al., 2000), University of Maryland tree cover dataset (DeFries et 
al., 2000), advanced very high resolution radiometer (AVHRR) 
(Bonan et al., 2002), and IGBP soil dataset (Global Soil Data 
Task, 2000).  The meteorological forcing data include grid-aver-
aged values of meteorological measurements from the MES-
ONET stations (Brock et al., 1995; Elliot et al., 1994); and radar 
(Nexrad) and satellite IR-based rainfall retrievals.
 The radar rainfall fields are extracted from the National 
Radar Rainfall Mosaic available at the Hydrologic Rainfall 
Analysis Product (HRAP) ~4-km resolution (Fulton et al., 
1998). The IR rain retrieval is part of a variable rainfall prod-
uct (VAR) array produced in real-time at NASA Goddard Space 

Figure 1
General hydrological processes for CLM
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Flight Center by Huffman et al. (2001). IR retrieval is derived 
from the brightness temperature, which is monitored at the 
top of cloud cover. Hence, the brightness temperature tends 
to include stronger information on regional convection storm 
and surface rainfall rate over highly vegetated areas. It is based 
on an IR rain algorithm applied to the NOAA Climate Predic-
tion Center ½-hourly global infrared composites (Janowiak et 
al., 2000).  Rain rates are then aggregated to 0.25˚ spatial grid 
resolution and hourly accumulations.  The IR algorithm is cali-
brated dynamically (on a month-to-month basis) on the basis 
of common datasets of ½-hourly IR brightness temperature 
and instantaneous precipitation fields, derived from low-orbit 
passive microwave observations (TRMM, SSM/I), matched at 
5˚/monthly space-time windows.  The calibration is based on 
matching the probability density histograms of IR brightness 
temperatures and MW rain rates falling within a common data-
set (Huffman et al., 2001).

Numerical experiment

The CLM simulates the one-dimensional grid average val-
ues at two distinct vegetation cover sites for the year of 2002  
(1 Jan  to 31 Dec). The initial soil moisture condition was fixed 
at the medium level (0.15) and the initial soil temperature is 
reasonably chosen as 273 K. The time step for the simulation 
was 1 h and 5 min Mesonet (Brock et al., 1995; Elliot et al., 
1994) and forcing data were hourly aggregated for the simu-
lation. Two model experiments performed in the study were 
forced with different rainfall input datasets (grid-averaged 
Nexrad (Radar) and IR). During the spin-up (1 Jan to 31 May), 
the grid-averaged rain gauge rainfall (Brock et al., 1995; Elliot 
et al., 1994) was used as a rainfall forcing. Consequently, the 
only forcing data that would differentiate the prognostic land 
surface variables between the two simulation experiments is 
the different source of precipitation input. The simulation was 
then performed at three different resolutions (0.25

o
, 0.5

o
 and 

1
o
) to determine their impact on model predictions. The prog-

nostic variables forced by spatially distributed rainfall data at 
three different resolutions were aggregated to 1˚ representative 
values and compared. Only the output for the warm season is 
used for analysis. 
 The land surface variables evaluated here are: latent heat 
flux (LE), sensible heat flux (SH), surface runoff (Roff), soil 
moisture content at 1 and 20 cm depth (θS), and soil temperature 
at 1 and 20 cm depth (θT).

Results and discussion

First, Fig. 2 shows the grid-averaged rainfall (1°) measured by 
the two sensors and the simulated runoff at the two selected sites.  
There are noticeable differences in the magnitude and temporal 
pattern of rain rates between the two sensors, especially DOY 
221 in HOLL and DOY 183. Table 1 summarises the statistics of 
sensor retrieval error (unconditional mean rainfall and relative 
error). Figure 3 shows a scatter plot of radar and IR vs. ground-
based gauge observations for the two study sites. More miss-
ing events are found in IR retrieval. In Fig. 4, the cumulative 
distribution function (CDF) as a function of the rainfall rate is 
shown. The CDF of a random variable X can be denoted by F(x), 
defined as: 

                  (1)

Both radar and IR seem to overestimate low rain rates and 
underestimate high rain rates of the ground-based rainfall in 
terms of frequency (low slope). These phenomena are more pro-
nounced in highly vegetated cover (SALL) but both radar and IR 
data have similar rainfall rate distributions.  Next we looked at 
categorical statistics, which is a schematic measurement tool for 
the correspondence between the reference and estimation (Ebert 
and McBride, 2002). The probability of detection (POD) meas-
ures the success of the forecast in correctly predicting the occur-
rence of rain. For example, POD=1 means a perfect score: 

                     (2)

The counts n1 and n3  indicate the total number of hits and 
misses, respectively. The POD is calculated from the 2x2 con-
tingency table (see Table 2) for a range of the threshold values, 

TABLE 1 
Statistics of hourly precipitation and sensor 
retrieval error (1o grid-averaged value for the 

period May to Oct 2002) for both sites
HOLL SALL

Mean
(mm/h)

Relative error, 
mean (STD) 
(in %)

Mean
(mm/h)

Relative 
error, 
mean 
(STD) 
(in %)

IR 0.1367 60(130) 0.1210 -12(76)
Nexrad 0.0856 . 0.1380 .

Figure 2
Rain rates and 

the corresponding 
runoff simulated 

by CLM of Nexrad 
and IR measure-
ments for sample 
periods at HOLL 
(left panels) and 

SALL (right  
panels) sites

)Pr()( xxF �� X

)31/(1 nnnPOD ��
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sensor calibration to a certain extent and the calibration effect 
of Z-R relation might vary with the rainfall intensity, which is 
not considered in this study. Next CLM simulations for three 
different resolutions (0.25o, 0.50o, and 1.0o) were performed at 
two study sites. The specification of the model parameter is a 
common issue in the land surface modelling approach and the 
model results are strongly dependent on these model parame-
ters. The model parameters of Version 2.0 CLM (Bonan et al., 
2002) to specify the structure of the model physics and surface 
characteristics are used without any modification. Tables 4 and 5 
summarise the mean and standard deviation (IR retrieval) of the 
relative error (Nexrad as a reference) for each of the hydrologi-
cal variables for the period of May to Oct 2002. We note differ-
ences between the two vegetation sites on both the systematic 
and random error propagation.  In sparse vegetation (HOLL) the 
systematic error decreases from rainfall to land surface param-

TABLE 2
Contingency table. The counts n1, n2, n3, and n4 

indicate the total number of hits, false alarms, misses 
and correct rejections. n=n1+n2+n3+n4, and the “obs:, 

“ref”, and “thr” denotes observation, reference, and  
threshold rainfall rate, respectively.

Pref  > thr Pref  < thr
Pobs > thr n1 n2
Pobs < thr n3 n4

Figure 3 (left)
Scatter plot of rainfall rate of 
gauge vs.radar (a and c) and 

gauge vs. IR (b and d) for HOLL (a 
and b) and SALL (c and d)

Figure 4 (bottom)
CDF of gauge, radar, and IR 

based measurement for HOLL (a) 
and SALL (b) 

and the POD analysis result is shown in Table 3. 
 Clearly, the IR rainfall is larger for the sparsely vegetated area 
and slightly smaller for the highly vegetated area. The relative 
error standard deviation (standard error) is larger for the HOLL 
site. It is noted that the structure of error strongly depends on the 
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TABLE 3
POD of radar and IR rain estimates pre-
sented for different rain-rate thresholds

HOLL SALL
Rain rate 
threshold 

(mm/h)

IR Radar IR Radar

0 0.36 0.49 0.46 0.59
1 0.21 0.25 0.31 0.44
2 0.16 0.27 0.31 0.37
3 0.18 0.26 0.26 0.33
4 0.14 0.29 0.18 0.32
5 0.17 0.25 0.20 0.30
6 0 0.10 0.12 0.19
7 0 0.14 0.13 0.13
8 0 0 0.09 0.18
9 0 0 0.10 0
10 0 0 0.20 0

TABLE 4
Mean of the relative error (in %) of hydro-
logical variables derived based on hourly 
IR rainfall input; the Nexrad rainfall was 

used to derive the reference 
hydrological variables

0.25o 0.50o 1.00o

HOLL P 59.7 59.7 59.7
LE 34.3 31.2 31.6
SH -25.9 -25.1 -27.4
Roff 114.8 115.1 115.8
θs(1 cm) 21.3 19.7 21.2

θs(20 cm) 7.4 7.3 8.3

θs(1 cm) -0.5 -0.5 -0.5

θs(20 cm) -0.5 -0.4 -0.4
SALL P -12.3 -12.3 -12.3

LE -10.5 -12.1 -13.7
SH 12.9 15.2 17.0
Roff -7.4 -6.7 -6.4
 θs(1 cm) -8.1 -8.3 -8.1

θs(20 cm) -5.4 -5.2 -4.7

θs(1 cm) 0.03 0.03 0.06

θs(20 cm) 0.02 0.02 0.05

Figure 5
Latent heat flux (LE) simulated by CLM for three different 

resolutions (0.25o, 0.50o, and 1.0o) at HOLL (left panels) and 
SALL (right panels) sites

eters with the exception of runoff.  Runoff error magnifies by ~2 
times for the HOLL site. The sensible heat flux (latent heat flux) 
is underestimated (overestimated) at HOLL, while moderately 
overestimated (underestimated) at SALL. The rainfall is overes-
timated at HOLL and underestimated at SALL and it is believed 
that the behaviour of the surface flux error is due to the trend of 
rainfall estimation because the temperature significantly varies 
with rain/no rain. On the basis of these results, there is, however, 
little evidence that the systematic error is significant depending 
on the spatial resolution over the study period. But the differ-
ence of the random error is noticeable, especially, in the runoff 
at HOLL as seen in Table 5. 

 The systematic error of near surface soil moisture (1cm) is 
larger than that of deep soil moisture (20cm), while the random 
error of deep soil moisture is larger at the HOLL site. The error 
propagation of soil temperature is slight, especially, in the sys-
tematic error and nearly in the order of the sensible heat flux.
 Figures 5 to 7 show examples of several days of simulated 
hydrological variables using two different rainfall retrievals as 
forcing data. It is obvious that there are significant differences 
in hydrological variables depending on the spatial resolution 
at rainfall event, even though the overall values for the study 
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period (Table 4) are not noticeably different depending on the 
spatial resolution. The significant differences are shown with the 
spatial resolution in the surface flux at a low rainfall rate (Fig. 
5(d1), (d2) and Fig. 5(d1), (d2), while the differences are shown 
in the soil moisture content at a high rainfall rate (Fig.7(d2) 
 It is of interest to see how the hydrological variables are cor-
related both spatially and temporally. Figure 7 shows the corre-
lation coefficient as a function of the distance for two vegetation 

sites. There is a tendency in the correlation length to be greater 
for the sparsely vegetated area and IR retrieval rainfall. The cor-
relation of the runoff is similar to that of precipitation, which is 
expected being the most direct outcome of precipitation. There 
is some suggestion that the land surface fluxes are spatially more 
correlated than runoff. 
 Next, the results show how much memory remains in the 
error propagation from precipitation to the land surface param-
eters for three resolutions. The cross-correlation coefficient, ρ, 
for each prognostic variable, was calculated as follows: 

                  (3)

where:
   σV.P is a covariance between the error in a prognostic  

variable, V, and corresponding error in precipitation, P, for 
a time lag k (in hours)

  σv and σp  are the standard deviations.

Figures 9-10 show the results of the lag cross-correlation values 
presented as function of time lag. The most noticeable and sig-
nificant result demonstrated by Figs. 9 to 10 is that the coarser 
resolution (1.0o) has longer memory and the runoff is highly 
correlated to precipitation but approaches the equilibrium as 
quickly as expected.
 The IR retrieval has a longer memory between two sources 
of precipitation and this can be attributed to high variance of 
the retrieval. It is also found that the correlation of the surface 
fluxes is very low but the memory remains longer than runoff. 
As mentioned earlier, the temperature is low on rainy days and 
then the latent heat flux is positively correlated but the sensi-
ble heat flux is negatively correlated (Figs. 9 (c), (d), (g), and 
(h)). The propagation of the water movement in the soil media is 
controlled by the hydraulic conductivity, which is dependent on 
the soil texture. A typical value for the hydraulic conductivity is 

TABLE 5
Standard deviation (STD) of the relative error  

(in %) of hydrological variables derived based on 
hourly IR rainfall input; the Nexrad rainfall was 

used to derive the reference hydrological variables
0.25o 0.50o 1.00o

HOLL P 123.8 129.2 130.3
LE 76.2 73.6 68.0
SH 34.5 33.9 32.0
Roff 187.0 213.4 231.5
 θs(1 cm) 98.6 95.1 88.0

θs(20 cm) 112.6 107.5 117.1

θT(1 cm) 37.8 36.7 33.8

θT(20 cm) 39.8 38.8 35.5
SALL P 93.0 88.0 76.1

LE 48.9 48.5 47.0
SH 29.0 28.9 27.2
Roff 93.2 91.3 91.5
 θs(1 cm) 86.7 83.0 78.4

θs(20 cm) 70.6 63.3 60.4

θT(1 cm) 19.7 19.0 16.7
(20 cm) 15.1 14.6 12.8

Figure 6
Rain rates and the corresponding runoff simulated by CLM of Nexrad and IR measurements for sensible heat flux (SH)
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Figure 8
Auto-correlation of Nexrad and IR rain retrieval error for each hydrologic variables at HOLL (left panel) and SALL(right panels) sites

Figure 7
Rain rates and the corresponding runoff simulated by CLM of Nexrad and IR measurements for soil moisture content (SM)
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~50 cm/day and the soil moisture content is not the most direct 
response to precipitation temporally. The soil moisture error has 
a lower correlation with the precipitation error (less than 0.5) 
than runoff. But the correlation peaks at around 2 h time lags for 
the 1 cm depths and it is possible for deep soil moisture (~20 cm) 
to take tens of hours to reach its peak. The soil temperature has 
a negligible correlation with precipitation. 

Summary and conclusions

The change in water resources due to climate change is of main 
interest in the Korean Peninsula. This preliminary study hope-
fully provides general understanding and some information to 
hydrologists for the near future.
 This study investigated the error propagation of precipita-
tion retrieval to the prediction of land surface parameters asso-
ciated with different rainfall observations and spatial scales. 
The strategy adopted is to simulate the prognostic variables at 
the hourly time step using two different sources of precipita-
tion data (i.e., ground-based Nexrad rainfall and satellite IR 
rain retrievals), assuming that the model parameters in CLM 
are well representative of the land surface processes.  The simu-
lated land surface parameters using 0.25o, 0.5o, and 1.0o aggre-
gated data for the two remote sensing precipitation observations 
were compared The primary conclusions of the present study 
are as follows:

• Temporal patterns of precipitation observations (and con-
sequently its error characteristics) are noticeably different 
in the two remote sensing observations. The model results 
show that the responses of hydrological variables (i.e., error 
propagation) are non-linearly dependent on the pattern of 
precipitation.

• In sparse vegetation (HOLL) the systematic error decreases 
from rainfall to land surface parameters with the exception 
of runoff.  The runoff error magnifies by ~2 times at the 
HOLL site

• The sensible heat flux (latent heat flux) is underestimated 
(overestimated) at HOLL, while moderate overestimated 
(underestimated) at SALL because the rainfall is overesti-
mated at HOLL and underestimated at SALL.

• Over the study period, the systematic error is not signifi-
cant depending on the spatial resolution but there are sig-
nificant differences in hydrological variables at rainfall 
event.

• The coarser resolution (1.0o) has a longer memory and the 
runoff is highly correlated to precipitation

• The correlation of the soil moisture peaks at around 2 h time 
lags for the 1 cm depths and it takes longer for deep soil 
moisture to reach its peak 

• The soil temperature has negligible correlation with precipi-
tation.

Figure 9
Cross-correlation between precipitation error and the corresponding error in other hydrological variables (runoff, latent heat flux, 

and sensible heat flux) versus time lag.  Left and right panels correspond to HOLL and SALL sites.
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Each land surface modelling approach has its own purpose and 
certain hydrological variables are emphasised. On the basis of 
the above results, it is recommended that care be taken to choose 
the precipitation forcing data and spatial resolution in the land 
surface modelling design. It is hoped that this study will contrib-
ute to water resource planning and management in Korean soci-
ety in the near future by combining the remotely sensed rainfall 
data and hydrological modelling approaches.
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