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Abstract

The performance of soft computing techniques to analyse and interpret the experimental data of local scour depth around 
bridge abutment, measured at different laboratory conditions and environment, is presented. The scour around bridge piers 
and abutments is, in the majority of cases, the main reason for bridge failures. Therefore, many experimental and theoretical 
studies have been conducted on this topic. This study sought to answer the following questions: Firstly, can data collected 
by different researchers at different times be combined in one data set? Secondly, can we determine any unquantified effects 
such as data differences, laboratory conditions and measurement devices? Artificial neural networks (ANN) are used and a 
basic ANN model is selected to observe the application problems, in order to avoid any misleading conclusion arising due to 
the model parameters selected and the compilation of different subsets of experimental data into one set. At the first stage, 
seven experimental data sets are compiled to address the first question and an ANN model is used to discovery any existing 
discrepancies between available data groups. The importance of selected model parameters for the model’s performance 
was demonstrated by increasing the number of parameters. Then, each data subset was inspected to expose the importance 
of the homogeneity of data groups in order to obtain a best-fit ANN model. Finally, a sensitivity analysis was carried out 
to obtain the dominant parameters of the problem. It was concluded that the use of ‘soft’ computational techniques such as 
ANN can be beneficial, provided the user is aware of the heterogeneity of the data set and the physical context of the subject 
or problem being addressed.  However, as with other data analysis techniques, elaborate inspection of data and results is 
required. 
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Introduction

Over the past few decades, statistical studies have shown 
that the most common cause of bridge failures is the removal 
of bed material around bridge foundations (Yanmaz, 2002). 
Abutments and piers are the component of a bridge foundation.  
Scour is classified as general scour, contraction scour and local 
scour. General scour involves the removal of material from 
the bed and banks across all or most of the width of a channel. 
This type of scour, natural or man-induced, needs both sedi-
ment and geomorphologic analysis. Contraction scour results 
from the acceleration of the flow due to either a naturally- or 
bridge-induced contraction. The basic mechanism causing local 
scour at bridge piers and abutments is the formation of vortices 
at their base. Generally, depths of local scour are much greater 
than general or contraction scour depths, often by a factor of 
10 (FHWA, 2001). Flow pattern and mechanism of local scour 
around a pier and abutment are complex phenomena resulting 
from the strong interaction of the 3-dimensional turbulent flow 
field around the bridge foundations and the erodible sediment 
bed. Piers and abutments are usually considered to be similar 
in the context of scour phenomena (Laursen, 1962; Melville, 
1997). Shirhole and Holt (1991) studied more than 1 000 col-
lapsed bridges and reported that 60% of failure is due to the 
scour of foundations. Although the scour depth at a abutment 
was found to be less than that at the equivalent pier due to the 

boundary layer effects induced by the channel wall (Kothyari 
and Ranga Raju, 2001), there are more cases accounted for 
by abutment scour depth than pier scour depth. For instance 
Federal Highway Administration (FHWA) of the USA studied 
about 383 bridge failures resulting from catastrophic floods 
(FHWA, 2001) and showed that 25% of the failures involved 
pier damage while 75% included abutment scour.  Begum et al. 
(2011) stated that the number of existing bridge abutments may 
be higher than the number of bridge piers since most bridges 
are single. In addition, they also declared that due to consider-
able investigation of the phenomenon of pier scour, a reliable 
design method is presently available; on the contrary, the 
evaluation of scour around abutments is in a preliminary stage.  
Further, Brice and Blodgett (1978) reported that damage to 
bridges and highways from floods in 1964 and 1972 amounted 
to about US$100 000 000 per event in the USA. Sutherland 
(1986) compiled a dataset for all major flood hazards in New 
Zealand during the period 1960-1984. Among 108 recorded 
failures, 29 were attributed to abutment scour. Kandasamy and 
Melville (1998) found that 6 of 10 bridge failures that occurred 
in New Zealand during Cyclone Bola were related to abutment 
and approach scour.  Macky (1990) also reported damage due 
to scour in New Zealand. Shirhole and Holt (1991) examined 
823 bridges which had collapsed since 1950 and concluded that 
60% of them resulted from bed scour or change of flow pattern. 
There have been a number of floods which led to bridge failures 
in Turkey over the past few decades: in the province of Trabzon 
in 1990, Malatya in 1991, Bartin in 1998, Hatay in 2001, and 
Mersin in 2001 (Yanmaz, 2002). Scour depth estimation at 
bridge foundations is a problem that has perplexed designers 
for many years (see Melville, 1997; Melville and Coleman, 
2000; Graf, 2001; Yanmaz, 2002; Barbhuiya and Dey, 2004; 
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Etama et al., 2003 and Kayatürk, 2005 for details). Thus, both 
experimental and theoretical scour analyses are necessary to 
explain the effect of flow distribution on local abutment scour 
depth (Sturm and Sadiq, 1996), in the case where bridge con-
traction causes significant afflux.

Recently, soft computing tools like artificial neural network 
(ANN) models, and adaptive neuro-fuzzy inference systems 
(ANFIS), etc., have been gaining popularity to predict the 
dependent variables in every branch of science. There has 
been tremendous growth in the computational mechanisms of 
ANN since the work of Rumerhalt et al. (1986). Within the last 
decade, ANN has become a powerful computational tool due to 
the development of more sophisticated algorithms. Therefore, 
soft computing tools such as ANN has been applied to many 
fields, and these tools have simply replaced the use of regres-
sion analysis. There are several advantages of soft computing 
tools over regression analysis. For instance, they do not require 
previously-obtained information about the relation, and the 
possibility of detecting nonlinearity is higher. 

The first article on a civil/structural engineering application 
of neural networks was published by Adeli and Yeh (1989). Since 
then, a large number of articles have been published on different 
engineering applications of neural networks. The artificial neural 
network application has also received attention for addressing 
sediment related-problems. Some studies related to local scour 
are as follows: Liriano and Day (2001) developed an artificial 
neural network model for scour prediction downstream of a 
culvert. Kambekar and Deo (2003) applied a neural network 
to predict the scour depth around a vertical pile group in the 
ocean. Choi and Cheong (2006) applied an ANN model which 
was trained by laboratory data to predict the scour depth around 
bridge piers in both laboratory and field studies. Lee et al. (2007) 
used ANN to predict the scour around bridge piers. Bateni et al. 
(2007a) developed both ANN and ANFIS models to predict the 
maximum scour depth and time-dependent scour depth around 
bridge piers using experimental data. They reported that the 
developed ANFIS method performed better than the existing 
expressions. Kaya (2010) developed an ANN model to study the 
observed pattern of local scour at bridge piers using an FHWA 
data set composed of 380 measurements at 56 bridges in 13 
states. There are also a number of models to predict pier scour 
in which ANN and some other soft computing applications can 
be seen, e.g. Bateni et al. (2007a,b), Fırat and Gungor (2009), 
Zounemat-Kermani et al. (2009), Azamathulla et al. (2010), Pal 
et al. (2011) and Rahman et al. (2010). 

To our knowledge, there are presently only a limited 
number of studies which have proposed ANN models in order 
to predict the scour depth around bridge abutments (Şarlak et 
al., 2006; Muzammil, 2008; Begum et al., 2011). In the present 
paper, these previous studies are expanded on by increasing the 
number of parameters involved in the phenomena. In addition, 
detailed data scrutinisation is performed. 

At the first stage of this study, 7 experimental data sets 
were compiled to address the following question: Can data 
collected by different researchers at different times be gathered 
in 1 set?’  Each data group was examined in order to investi-
gate this issue. Then, the detailed analysis of each data subset 
was examined to determine the importance of the number of 
parameters and homogeneity of the data on the results pro-
duced, in order to address a second question: Can we determine 
any unquantified effects such as those resulting from data 
heterogeneities, and differences in laboratory conditions and 
measurement devices? Although in the present study abutment 
scour depth data were used as sample data in the ANN model, 

the aim was not to obtain a general model for predicting scour 
depth. Instead ANN models’ ability to establish relations for 
different data groups was investigated and effectiveness of 
ANN was examined. Ultimately, by applying sensitivity analy-
sis, the effectiveness of selected parameters on model perfor-
mance was determined. 

Methods and results

Artificial neural networks 

An ANN model consists of 2 main components, the first is the 
structure of the model and the second is the selection of the 
learning algorithm. The structure of the model is classified 
according to the number of layers; 2, 3, multi-layer, etc. Some 
of the learning algorithms presented in the literature include: 
back-propagation, feed forward back-propagation (FFBP), 
feed forward cascade correlation (FFCC), radial basis function 
(RBF), Levenberg-Marquardt, quasi-Newton, conjugate gradi-
ents, Powel-Beale, etc. 

In the study by Muzzamil (2008), 3 ANN models were 
developed, namely, FFBP, FFCC and RBF. The important 
conclusions derived from this study were: FFBP shows the best 
performance during validation and the raw data provide better 
performance than normalised data. According to the ASCE 
Task Committee, the primary difference between the RBF net-
work and back-propagation is in the nature of the nonlinearities 
associated with hidden nodes (ASCE, 2000). The nonlinearities 
in back-propagation are implemented by a fixed function, such 
as sigmoid. The RBF method, on the other hand, bases its non-
linearities on the data in the training set. Once all of the basic 
functions in the hidden layer have been found, the network only 
needs to learn at the output layer in a linear summation basis. 
Thus, the RBF method is not suitable due to its inadequate 
capacity for handling nonlinearities.

In the present study the most common algorithm, i.e., 
3-layer forward feed structure with back-propagation learning, 
was selected, since the main concern was to investigate the 
applicability of ANN models for analysing the experimental 
data obtained from different model setups. 

ANN models are constructed by using Neural Ware Packet 
Program. This program offers proven technology tools for 
developing neural networks. This also allows quick generation 
of a neural network based on standard neural network archi-
tectures (NeuralWare Inc., 2002). Since a commercial package 
program was used to develop the model, only a brief introduc-
tion to ANN architecture and solution structure will be given.

A typical 3-layer feed-forward ANN consists of layers for 
‘input’, ‘hidden’ and ‘output’, which each contain several nodes 
(Fig. 1). In the present study, a 3-layer feed-forward artificial 
neural network model was constructed which has 5 (later 7) 
neurons in the input layer, 3 neurons in the hidden layer and  
1 neuron in the output layer.

In the present study, a back-propagation learning algorithm 
which is based on supervised learning was selected, and the 
output of the system was compared to the experimental data. In 
a back-propagation algorithm there are 2 main steps. The first 
step is a forward pass or activation phase in which inputs are 
processed to reach the output layer through the network. After 
the error is computed, a second step, namely error back-prop-
agation, starts in a backward direction through the network. 
During the training phase, an error value, in this case the root 
mean square error (RMSE), is calculated between the desired 
output and the actual output. 
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                (1)

where: 
N is the number of data sets
ti is the target value for the ith set
oi is the output of the ith set which is produced by the ANN

The RMSE is then propagated backwards to the input layer and 
the connection weights between the layers are readjusted. After 
the weights have been adjusted and the hidden layer nodes have 
generated an output result, the error value is re-determined. If 
the error value was not reached, which is usually defined by a 
particular iteration number, the error will then again be propa-
gated backwards to the input layer. This procedure continues 
until the model has finally reached the predetermined toler-
ance limit. To decrease the initial learning rates, a learning 
coefficient ratio is used. The learning coefficient is reduced 
from the initial learning coefficient by an amount correspond-
ing to the learning coefficient ratio until training time. In this 
respect, even if initially high learning rates are selected, such 
as 0.3 for the hidden layer and 0.15 for the output layer, and 
the momentum coefficient is selected as 0.4, the training of the 
network can be accomplished, in this example, with a 0.00001 
learning rate and a 0.00001 momentum coefficient after 50 000 
iterations.

The overall data set was divided into 2 subsets for each 
analysis: training and testing. We used 75% of the data for 
training and 25% of the data for testing. The training and test-
ing data sets were selected randomly. Furthermore, the mini-
mum and maximum values for the data range for each data set 
were considered very carefully.  Since the ANN predictions are 
valid within the trained and tested data range, as is the case for 
any model, the data range must be selected very carefully. This 
problem was neglected by some of the studies reported in the 
literature.

Parameter descriptions

Laboratory data for the equilibrium local scour depth around 
abutments, for the clear-water condition, obtained by 7 inves-
tigators, were used for this study. Scour is a time-dependent 
phenomenon. However, under constant flow conditions stable 
position is reached after a certain time period, after which 
scour will not increase further. The depth of scour at this 
stage is called either the equilibrium scour depth or maxi-
mum scour depth. The depth of maximum scour is a design 
parameter. A schematic description of a bridge foundation 
composed of piers and abutments is shown in Fig. 2. Since 
the data pertain to local scour, the shape of the abutment is 

important as a physical quantity. The abutment shape for all 
of the experimental data analysed in the present study was a 
vertical wall, as seen in Fig. 2. 

For below or near clear-water approach flow conditions, the 
equilibrium local scour depth, dse, at an abutment is a function 
of fluid, flow, sediment, geometry of both channel and struc-
ture, and time, as given in Eq. (2). 

                (2)

where: 
u = mean approach flow velocity (LT-1)
y = approach flow depth (L)
g = gravitational acceleration (LT-2) 
r = density of the fluid (ML-3)
m = dynamic viscosity of fluid (ML-1T-1)  
ρs = density of the sediment (ML-3)
d50 = median particle grain size (L) 
σg = (d84/d16)

0.5, the geometric standard deviation of sedi-
ment size distribution (d84 = sediment size for which 84% of 
the sediment is finer, d16 = sediment size for which 16% of  
the sediment is finer)
ℓ = abutment length (L) 
b = abutment width (L) 
w = channel width (L) 
So = slope of the channel (L/L) 
t = scouring time (T) 

The Buckingham π theorem will reduce Eq. (2) to 11 dimen-
sionless variables as follows:

                (3)

where:
Fr is the Froude number and Re is the Reynolds number, 
and D is the dimensionless density parameter which is 
described as:
                (4)
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A 3-layer ANN Architecture
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Figure 2
Schematic views of abutment and pier scours 

a) Top view and b) Side view.
ℓ = abutment length (L), b = abutment width (L); w = channel 
width (L); y = approach flow depth (L) and  dse= equilibrium  

scour depth
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The dimensionless parameters are necessary while applying 
regression analysis by reducing the number of parameters. 
However in ANN modelling we have the freedom to select 
the number of nodes at the input layers, therefore the use of 
raw data instead of dimensionless parameters will be a bet-
ter choice. Evidence from the literature also shows that ANN 
models are not performing well with dimensionless parameters. 
Kambeker and Deo (2003) used raw data as input but predicted 
a dimensionless form of the scour depth. Although they used 
both forward feed and recurrent neural network models and 2 
learning algorithms; back-propagation and cascade correlation, 
the results only changed slightly. Bateni et al. (2007b) concluded 
that use of constitutive raw parameters in place of their group 
yields better results because of the increased flexibility in fitting 
which is achieved. In the study of Bateni et al. (2007a), a sensi-
tivity analysis of the dimensionless parameter was carried out, 
which showed that y/bpier was the most effective and Reynolds 
number, Re, was the least effective parameter. In the same study, 
sensitivity analysis with raw data shows that the pier diameter 
is the most important parameter. However, the pier diameter is 
included in both dimensionless (normalised) parameters of the 
most effective parameter, y/bpier, and the least effective para-
meter, Re. It can thus be concluded that dimensionless variables 
are not useful in ANN models. In Liriano and Day’s study (2001) 
the dimensionless group gives a slightly better prediction of 
scour at the culvert outlets. This is the only exception which was 
found in the literature. Therefore, we choose the raw data for the 
following analysis. 

Can data collected by different researchers at 
different times be gathered in 1 set?

The sample size of the total measured data of 7 research-
ers was 85; Table 1 shows the characteristics of these 7 data 
groups (which were sourced from Ballio (2004) and were 
used in studies published in: Ballio and Orsi, 2000; Tey, 1984; 
Dongol, 1994; Ladage, 1998; Rajaratnam and Nwachukwu, 
1983; Cunha, 1975; Oliveto and Hager, 2002). Each data group 

in Table 1 is named using ‘D’ followed by a number. In this 
table, only the maximum and minimum values of the measured 
quantities are presented due to space limitations. 

Thus, at the first stage of the study in ANN modelling, flow 
depth, y, abutment length, ℓ, abutment width, b, median particle 
grain size, d50, and mean approach flow velocity, u, were input 
variables and the equilibrium scour depth,  dse, was the target 
output. These variables are most common variables observed in 
the laboratory and field studies.

After using randomly-selected data sets for training (70) 
and testing (15), the root mean square error (RMSE) and the 
correlation coefficient (R2) of the test case were found to be 
0.2601 and 0.43, respectively. The correlation coefficient of 
0.43 and RMSE value of 0.261 used for quantitative compari-
sons are not high enough to establish an accurate and reliable 
model. At this stage, it can be concluded that this ANN model 
failed to obtain good results for this data set, suggesting that 
a new model should be found which yields reasonable results 
from available data set. However, instead of finding a new 
model, the same ANN model was used to scrutinise the data set 
in order to investigate the following question: Can data col-
lected by different researchers at different times be gathered in 
1 data set? 

To find the answer to the above question, Total Data (TD) 
was examined for each researcher. Thus, each data subset was 
extracted from Total Data one by one and an ANN model was 
constructed for each case. In Table 2, these results are pre-
sented with the result of TD including 5 input variables (TD5). 

Investigating the statistical output (given in Table 2), it can 
be seen that the correlation coefficients are increased and the 
highest correlation value of 0.98 is obtained when D3 is sub-
tracted from the total data. Therefore, M3 can be selected as a 
design model. Then each subset was taken as test data and the 
performance of the selected model, M3, was evaluated.  Table 3 
shows the results of these model runs.

According to the results presented in Table 3, it can be con-
cluded that our experimental data sets should not be gathered in 
1 set, since the data set of D3 is not consistent with the others. 

Table 1
Main characteristics of experimental data sets

Variables (the range of values for each data set is indicated by the symbol  ~ )
Group n y (cm) ℓ (cm) b (cm) d50 (cm) σg D u

(m∙s−1)
dse

(cm)

D1
Ballio 14 9.0~18.3 5~20.5 20~193 0.19~0.5 1.25~1.3 1.61~1.62 0.44~0.72 13.37~41.8

D2
Tey  

D3
Dongol 

5 5~35 16.5~30.2 152 0.082 1.26 1.65 0.27 ~0.36 14.71~39.87

33 10~60 15~30 152 0.090~1.8 1.17~1.45 1.65 0.33~1.43 11.1~41.04

D4
Ladage 8 12~20 30~60 240 0.080 1.28 1.65 0.21~0.31 16.22~44.12

D5
Rajaratnam and 
Nwachukwu 

6 10.67~15.39 15.2 91 0.14 1.30 1.62 0.2~0.32 5.52~18.33

D6
Cunha 11 4~14 10~30 200 0.14~0.58 1.18~1.60 1.70~1.77 0.22~0.70 4~28.9

D7
Oliveto and Hager 8 1.1~30 5~20 100 0.055 1.37 1.65 0.15~0.26 3.9~22.6

Total data (TD) 85 1.1~60 5~ 60 20~200 0.055~1.8 1.17~1.60 1.61~1.77 0.21~1.43 4~44.12
Source: Ballio (2004)  
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Can we determine any unquantified effects such 
as differences in heterogeneity of data, laboratory 
conditions and measurement devices? 

The purpose of this stage was to determine some unquanti-
fied effects such as data difference, laboratory conditions and 
measurement devices on examined data sets. As can be seen in 
Table 3, while the lowest correlation is obtained with M3/D3, 
the highest correlation is obtained with M3/D4. Thus, D3 data 
produce a poorer estimate compared to the rest of the data sets. 

This may be due to the fact that D3 data are not consist-
ent with the other data subsets. To investigate further, it was 
decided that the number of input data would be increased by 
including geometric standard deviation of sediment size distri-
bution, σg, and dimensionless sediment density parameter, D.  

A question arises at this stage about the inclusion of critical 
mean velocity, uc, since in conventional regression analy-
sis the use of critical velocity is very common. Also, in the 
literature, critical velocity, uc is included in the input list 
for an ANN model (Muzammil, 2008). However, uc should 
be ignored because the critical mean velocity for entrain-
ing bed sediment can be estimated from y and d50 (Melville 
and Coleman, 2000) in order to obtain an independent input 
set. There are a few empirical equations proposed for the 
phenomena including critical velocity. The critical velocity 
has importance when observing or analysing time-dependent 
scour. Therefore, both the critical velocity and equilibrium 
scour time were accounted for in the study of Bateni et al. 
(2007b); in addition it was shown that critical velocity is the 
least effective parameter.

Table 4 summarises the results for the model with 7 input 
parameters. The correlation coefficient is raised to a value of 
0.79. Therefore, it can be said that both the sediment size and 
its uniformity are effective parameters for predicting abutment 
scour. In order to emphasize this conclusion, subset D3 can be 
inspected to find out whether it includes coarse sediment or not. 
Figure 3 shows dse as a function of d50 for each data subset. It 
is seen that D3 contains coarse sediment (d50>1 mm), meaning 
that D3 subset is not compatible with the other subsets due to 
the range of sediment diameters. Therefore, instead of exclud-
ing the whole D3 dataset, only the coarse sediment data from 
D3 were excluded from the total data.  

The correlation coefficient and RMSE values for the 
new model excluding the coarse sediment data of D3 were 
computed as 0.77 and 0.11178, respectively (see Table 5). 
The new correlation coefficient is higher than TD5 (0.43) but 
lower than TD7 (0.79) model. To examine this result in detail, 
geometric standard deviation, σg, of particle size distribution, 
which is a measure of uniformity of the bed sediments, was 
investigated. Thus, it is considered whether the data subsets 
contain uniform or non-uniform sediments. This is important 
because non-uniform sediments (σg >1.4) consistently produce 
lower scour depths than uniform sediments. Variations of 
scour depths dse with sediment gradation σg for each data set are 
shown in Fig. 4. 

According to Fig. 4, some D3 and D6 data points are 
greater than 1.4. Therefore, these data were also excluded from 
the total data and the analysis was repeated without coarse and 
non-uniform sediment data. The correlation coefficient and 
RMSE values were computed and are given in Table 5. The 
correlation coefficient increased to a value of 0.93. 

Table 2
Statistical properties with 5 input parameters: Model TD5

Name
Learning Testing

n R2 RMSE n R2 RMSE

TD5 70 0.82 0.0999 15 0.43 0.2601

M1=TD5-D1 56 0.88 0.0758 15 0.73 0.1064
M2=TD5-D2 65 0.70 0.1091 15 0.78 0.1192
M3=TD5-D3 40 0.93 0.0641 12 0.98* 0.0446
M4=TD5-D4 65 0.72 0.1062 12 0.71 0.1165
M5=TD5-D5 64 0.69 0.1201 15 0.45 0.1709
M6=TD5-D6 62 0.73 0.1082 12 0.46 0.1565
M7=TD5-D7 65 0.69 0.1178 12 0.47 0.1695

*The highest correlation

Table 3
Cross check of Model M3

Test  data R2 RMSE

M3/D1 0.82 0.1031
M3/D2 0.66 0.1539
M3/D3 0.58 0.1640
M3/D4 0.95* 0.0598
M3/D5 0.89 0.0742
M3/D6 0.64 0.1613
M3/D7 0.78 0.1360

*The highest correlation 

Table 4
Statistical properties with 7 input parameters: Model TD7
Name Learning Testing

n R2 RMSE n R2 RMSE

TD7 70 0.78 0.0941 15 0.79 0.1028
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Figure 3
Variation of scour depth dse with sediment size d50 for each data set

Table 5
Statistical properties without coarse sediment 

data (CD) and non-uniform data (NUD)

Name
Learning Testing

n R2 RMSE n R2 RMSE

TD7-CD 50 0.83 0.0868 15 0.77 0.1178
TD7-CD-NUD 36 0.88 0.0779 15 0.93 0.0682
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This exercise showed that misinterpretation can easily 
occur, regardless of the accurateness of the model, unless the 
number of data points and the number of parameters is large 
enough to address the problem. 

Sensitivity analysis 

In the last part of this study, a sensitivity analysis was car-
ried out to identify the dominant parameters influencing the 
problem. Table 6 shows the result of the sensitivity analysis 
for 7 parameters with the reduced data set, after excluding 
the experiments with the coarse and non-uniform sediments. 
In the process of the sensitivity analysis, the parameters were 
excluded one by one from the list of input variables. Then, the 
parameter with the least relative importance compared to all of 
the other parameters is extracted from the model construction, 
based on the highest correlation coefficient. This procedure is 
repeated for all parameters one by one. In the first stage, the 
least effective parameter was determined to be abutment width, 
b, since the highest correlation is obtained when b is excluded 
from the input list. This conclusion has been supported by 
experimental research reported by Kayatürk (2005). Therefore, 
in the second stage, b was omitted, and the analysis repeated 
for the rest of the variables. In Table 6, the results are given 
for different hidden nodes, and it can be seen that increasing 
the number of hidden nodes is not necessary for improving the 
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Figure 4
Variation of scour depth dse with sediment 

gradation σg for each data set

 

 

Table 6
Sensitivity analysis results for the parameters

Model  
parameters 

Hidden node 3 Hidden node 5 Hidden node 7 
Learning R2 Testing R2 RMSE Learning R2 Testing R2 Learning R2 Testing R2

MODELS  WITH VARIABLES  y, ℓ, b, d50, u, σg,  
TD7-CD-NUD 0.88 0.93 0.068 0.87 0.93 0.87 0.94 
b excluded 0.87 0.95 0.061 0.87 0.94 0.87 0.95* 
d50   excluded 0.82 0.95 0.055 0.81 0.94 0.81 0.94 
u excluded 0.72 0.95 0.060 0.72 0.95 0.72 0.95 
ℓ excluded 0.82 0.84 0.104 0.82 0.84 0.82 0.84 
y excluded 0.87 0.88 0.087 0.87 0.88 0.87 0.88 
 excluded 0.87 0.93 0.070 0.87 0.93 0.87 0.93 
σg excluded 0.87 0.90 0.080 0.87 0.91 0.87 0.90 

MODEL WITH VARIABLES  y, ℓ, d50, u, σg,  
ℓ excluded 0.75 0.83 0.104 0.75 0.83 0.75 0.83 
d50  excluded 0.80 0.96 0.05 0.80 0.96 0.80 0.96* 
u excluded 0.71 0.94 0.065 0.71 0.94 0.71 0.94 
y  excluded 0.87 0.89 0.085 0.87 0.89 0.87 0.89 
σg  excluded 0.86 0.92 0.073 0.86 0.92 0.86 0.92 
 excluded 0.86 0.93 0.066 0.87 0.93 0.87 0.93 

MODEL WITH VARIABLES  y, ℓ ,u, σg,  
y  excluded 0.73 0.77 0.119 0.72 0.76 0.72 0.76 
ℓ excluded 0.62 0.84 0.101 0.61 0.85 0.61 0.85 
u excluded 0.65 0.91 0.074 065 0.92 0.65 0.92 
σg   excluded 0.77 0.95 0.060 0.77 0.95 0.77 0.95 
 excluded 0.77 0.97 0.045 0.77 0.97 0.77 0.97* 

MODEL WITH VARIABLES  y, ℓ, u, σg 
y  excluded 0.72 0.79 0.114 0.71 0.78 0.71 0.78 
ℓ excluded 0.60 0.87 0.092 0.59 0.87 0.59 0.87 
u excluded 0.59 0.94 0.068 0.59 0.94 0.59 0.94 
σg   excluded 0.80 0.96 0.054 0.75 0.95 0.75 0.96*

MODEL WITH VARIABLES  y, ℓ, u 
y  excluded 0.71 0.78 0.118 0.71 0.78 0.71 0.78*

ℓ excluded 0.40 0.67 0.147 0.40 0.67 0.40 0.66 
u excluded 0.42 0.77 0.128 0.42 0.77 0.42 0.77 

MODEL WITH VARIABLES  ℓ, u 
ℓ excluded 0.37 0.60 0.158 0.37 0.58 0.37 0.58*

u excluded 0.48 0.37 0.170 0.35 0.23 0.46 0.35 

*The highest correlation coefficient  
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results. In summary, the parameters can be listed from the least 
effective to the most effective as follows: b, d50, D,σg, y, ℓ  and u.  

Discussion

In general, when constructing an ANN model, parameters 
are selected according to available empirical equations in the 
literature. Some researchers have tried to compare their results 
with the available equations based on the results of regression 
models.  For example, Choi and Cheong (2006) and Fırat and 
Gungor (2009) compared results of ANN models developed to 
predict bridge pier scour with some of the available empirical 
calculations. Choi and Cheong (2006) used the equations of 
Laursen and Toch (1956), Neill (1973), Jain and Fisher (1979), 
CSU (Richardson and Davis 1995) and Melville (1997). The 
results showed that CSU gave the minimum error. Jain and 
Fisher (1979) and Melville (1997) over-predicted the scour 
depth. Among 5 formulas, only CSU encompasses bpier, y, u, 
d50 and σg, whereas Melville’s formula contains uc instead of 
u and Jain and Fisher include u and uc, together.  Furthermore, 
Laursen and Toch (1956) and Neill’s (1973) formulas consist 
of only 2 parameters, bpier and y. These results showed that the 
consistency of the number of parameters between different 
models is quite important in order to establish model superi-
ority. Firat and Gungor (2009) compared experimental data 
of several researchers with 5 empirical equations reported in 
the literature. In their study no information is given on the 
selection of the 5 equations.  Equations based on regression 
analysis of experimental data always have limitations due to 
the range of parameters. If the equations are the result of linear 
regression, it is obvious that a model which is able to predict 
non-linear relationships can give better results. However, the 
knowledge which can be gained from such laboratory studies 
should not be underestimated.   

Therefore, ANN models or more advanced models can 
be powerful tools if the data base is large enough to cover as 
many different conditions as possible. It is widely accepted that 
ANN models are universal approximators. However, accord-
ing to Hornik et al. (1989), an ANN can act as a universal 
function approximator if a sufficiently long training time and 
sufficiently large number of hidden layers with a sufficiently 
large number of neurons in each of the hidden layers are given. 
Moreover, ANN models are data intensive (ASCE, 2000). If 
the number of data is limited, extra effort should be invested in 
selecting the model parameters. In addition, the homogeneity of 
data has great importance. 

Summary and conclusions

An artificial neural network model is used as a tool to analyse 
the experimental data for equilibrium local scour depth around 
bridge abutments. The ability of ANN models in establish-
ing relations with different data groups is investigated and the 
reasons for the effectiveness of ANN models for these data sets 
were examined. This study exposes that researchers need to be 
careful when gathering different experimental or field data sets 
together before constructing an ANN model since the model is 
data driven.

For the first part of the study, a general ANN model with 5 
input parameters was constructed with the total data (85) clas-
sified as training (70) and testing (15). A data elimination pro-
cess was then performed by subtracting each data subset from 
the total data set, one by one. This procedure showed whether 
each subset had similar characteristics or not. 

For the second part of the study, 7 input parameters were 
used and each data subset was analysed in detail. The detailed 
analysis of each data subset indicated the importance of param-
eter number and data homogeneity. The results confirm that 
ANN models can successfully be used to trace the compatibil-
ity of the experimental data collected from different studies. 

In the last part of the study, sensitivity analysis was car-
ried out to discover the dominant parameters of the problem. 
Sensitivity analysis demonstrated that flow mean velocity, u, is 
the most effective, and abutment width, b, is the least effective 
parameter for determining equilibrium scour depth, dse. 

In conclusion, the findings of the present study, along with 
other published studies, show that with available algorithms 
and data we are actually still far from reaching a universal 
conclusion for scour depth calculations. It is suggested that the 
community of hydraulic engineers should collaborate in order 
to establish a data bank for this problem. 
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