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Abstract

The accurate prediction of rainfall events, in terms of their timing, location and rainfall depth, is important to a wide range 
of social and economic applications. At many operational weather prediction centres, as is also the case at the South African 
Weather Service, forecasters use deterministic model outputs as guidance to produce subjective probabilistic rainfall 
forecasts. The aim of this research was to determine the skill of a new objective multi-model, multi-institute probabilistic 
ensemble forecast system for South Africa. Such forecasts are obtained by combining the rainfall forecasts of 2 opera-
tional high-resolution regional atmospheric models in South Africa. The first model is the Unified Model (UM), which is 
operational at the South African Weather Service. The UM contributes 3 ensemble members, each with a different physics 
scheme, data assimilation techniques and horizontal resolution. The second model is the Conformal-Cubic Atmospheric 
Model (CCAM) which is operational at the Council for Scientific and Industrial Research, which in turn contributed 2 
members to the ensemble system based on different horizontal resolutions. A single-model ensemble forecast, with each 
of the ensemble members having equal weights, was constructed for the UM and CCAM models, respectively. These UM 
and CCAM single-model ensemble predictions are then combined into a multi-model ensemble prediction, using simple 
un-weighted averaging. The probabilistic forecasts produced by the single-model system as well as the multi-model system 
have been tested against observed rainfall data over 3 austral summer 6-month periods from 2006/07 to 2008/09, using the 
Brier skill score, relative operating characteristics, and the reliability diagram. The forecast system was found to be more 
skilful than the persistence forecast. Moreover, the system outscores the forecast skill of the individual models.
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Introduction

Precipitation forecasts are of high relevance to users of meteor-
ological information in South Africa, but precipitation is 
also highly variable in time and space, making it one of the 
most difficult meteorological variables to predict skilfully. 
Nonetheless, skilful precipitation forecasts are essential to pro-
vide early warning of heavy rainfall and floods that may lead to 
loss of life and property. Most modern operational weather cen-
tres rely on limited-area numerical weather prediction (NWP) 
models in order to generate reliable and accurate weather fore-
casts (Stensrud et al., 1999; Toth et al., 2001). At short-range 
time scales (from 12 h up to 3 days), predicting the location 
of a precipitation event has a greater error than the prediction 
of the pattern and amount of precipitation (Theis et al., 2005). 
The large spatial and temporal variability in rainfall, together 
with some NWP model errors, contributes to the uncertainties 
and low skill associated with rainfall predictions (Ebert, 2001; 
Theis et al., 2005; Roy Bhowmik and Durai, 2010).

Precipitation forecasts from NWP models are often pro-
vided in a deterministic manner. An inherent characteristic of 
deterministic forecasts is that the future state of the atmosphere 

is assumed to be conditional on the present state of the atmos-
phere only, and evolution of the future state is governed by 
deterministic equations. Therefore, an accurate short-range 
numerical forecast is dependent on accurately describing the 
initial conditions (Kalnay, 2003). The reason for this depend-
ency on accurate initial conditions stems from the chaotic and 
non-periodic characteristics of the atmosphere (Lorenz, 1963). 
Forecasts that are initialised with only slightly different initial 
states progressively diverge as a function of model integra-
tion time. Deterministic or best-guess forecasts are therefore 
considered to be less reliable as the model integration-time 
increases, due to uncertainties that exist in the initial condi-
tions as well as the internal error (physics and dynamics) of the 
numerical model itself (Lorenz, 1963; Ebert, 2001; Stensrud et 
al., 2005; Theis et al., 2005). 

Many national meteorological services (NMS) issue precipi-
tation forecasts in terms of subjective probabilities, whereby it 
is assumed that the user receives additional information regard-
ing the uncertainty pertaining to the specific forecast (Staël von 
Holstein, 1971). Forecasters have long been aware of the fact that 
different models often produce a variety of the predicted weather 
outcomes (Ebert, 2001). The probability forecasts issued by fore-
casters are subjective because they are based on the forecaster’s 
own insights and experience being used in the mental integra-
tion of several model realisations (Staël von Holstein, 1971). 
Methods that could produce objective probability forecasts at the 
short-range time-scale have the potential to objectively address, 
to some extent, the uncertainties associated with describing 
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the initial state of the atmosphere as well as the uncertainties 
induced by internal model errors (Theis et al., 2005).

An ensemble prediction system (EPS) represents a sto-
chastic approach which couples probability with determinism 
(Lewis, 2005), and which has the specific aim of predicting the 
probability of future weather events occurring, in turn address-
ing the uncertainty of a deterministic forecast (Stensrud et al., 
1999). Theis et al. (2005) concluded that precipitation forecasts 
should be addressed in a probabilistic manner in order to 
account for the chaotic nature of NWP forecasts. An important 
goal of ensemble prediction is to provide estimations of the 
reliability of the forecast being made (Kalnay, 2003; Grimit and 
Mass, 2005). The ensemble of forecasts from single or multiple 
numerical weather prediction models provides detail of the 
forecast, regarding the confidence, possible errors and probabil-
ity outcomes (Bakhshaii and Stull, 2009). 

Ensemble forecasts may be constructed in various ways 
(e.g. Kalnay, 2003). The traditional approach is to perform 
multiple model runs using the same model, by initialising each 
run from initial conditions constructed in a different man-
ner. Single-model ensemble systems effectively inhibit the 
description of the forecast uncertainty associated with model 
error, and this may lead to underestimation of the forecast 
error (Clark et al., 2008). However, multi-model ensemble 
forecasts better address both the uncertainties that exist in 
the systematic errors of each numerical model, as well as the 
uncertainties within the initial conditions (Ebert, 2001). Clark 
et al. (2008) noted that, in addition to addressing uncertainties 
in initial conditions, ensemble forecasting, and more specifi-
cally multi-model systems, will also inadvertently address 
errors related to lateral boundary conditions. At the short-range 
time-scale, synoptic and mesoscale features are less predict-
able, due to their more chaotic features, than features at the 
planetary scale (Hamill and Colucci, 1997; Friederichs and 
Hense, 2008; Roy Bhowmik and Durai, 2010). For this reason, 
ensemble methods will primarily improve the description of 
the uncertainty and model error that exists in relation to these 
shorter-length time-scale features. The model uncertainty can 
be accounted for by running the same model with different 
physical parameterisations or analysis times or by using model 
runs from different numerical models (Bowler et al., 2008b, 
Wandishin et al., 2001). Typically, the errors and uncertainties 
in each individual member of the ensemble cancel out when 
calculating the ensemble average, making the ensemble aver-
age appear relatively smooth (Bowler et al., 2008b; Kalnay, 
2003).  A multi-model system based on a multi-institute ensem-
ble has the advantage of effectively sharing the computational 
power needed to construct large ensembles amongst different 
institutions.

Even though research has shown that an ensemble mean 
forecast generally outperforms a single deterministic forecast 
(Ebert, 2001), operational use of short-range ensemble systems 
has lagged behind that of long-range and medium-range fore-
casting (Eckel and Mass, 2005). However, there are a number 
of NMSs that use short-range ensemble prediction systems 
operationally or quasi-operationally.  These include NCEP 
(USA), INM (Spain), NMI (Norway), the Met Office (UK), 
DWD (Germany), BoM (Australia) and recently also SAWS 
(South Africa).

The objectives of this study were to investigate the skill of 
a South African multi-model ensemble in predicting 24-hour 
precipitation for South Africa, and to compare the skill of the 
multi-model ensemble to that of the single-model ensemble 
systems it is based upon. 

In the next section, the observed data sets and forecasting 
systems are discussed. The construction of the new multi-
model ensemble system based on 2 operational NWP models in 
South Africa and the forecast verification methods applied to 
describe the accuracy and skill of the system are described in 
the ‘Methods’ section. Verification results are presented in the 
‘Results’ section, and conclusions are drawn in the ‘Discussion 
and conclusions’ section.

Data

Model data

Unified Model
The Unified Model (UM) is a non-hydrostatic model developed 
at the UK Met Office (Davies et al., 2005). Its vertical coordi-
nate is based on geometric height. The UM can in principle be 
applied at time-scales ranging from weather forecasting to cli-
mate projection, and at resolutions ranging from relatively low 
to very high, beyond the validity of the hydrostatic assumption 
(Davies et al., 2005). The UK Met Office runs the UM at global 
scale with horizontal resolution of 40 km, 4 times per day, 
providing initial and boundary conditions for a regional version 
of the UM. Since May 2006, UM version 6.1 has been running 
operationally at SAWS with different configurations, including 
various horizontal resolutions, parameterisation schemes and 
data assimilation processes (Tennant, 2007). The three configu-
rations used in this study are described in detail. All three of 
the configurations run in-house at the SAWS on a NEC SX-8 
supercomputer.

12 km no Data Assimilation (no-DA)
The 12 km no-DA UM forecast covers the subcontinent of 
southern Africa as well as large areas of the surrounding 
oceans (Fig. 2a). This configuration runs once a day with 38 
levels in the vertical, and produces forecasts 48 h ahead from 
the initialised field at 00:00 UTC (Tennant, 2007). The forecast 
output fields are written every hour. This run uses the 18:00 
UTC forecast from the UM Global Model to provide initial 
conditions to the 12 km run at 00:00 UTC, as well as lateral 
boundary condition fields. 

12 km DA
This configuration field has the same domain (Fig. 2a) and 
resolution as the 12 km no-DA run, but incorporates continu-
ous 3-dimensional variational (3DVAR) DA. DA is a statistical 
method of combining the latest observational data and the first-
guess field from the previous short-range forecast for the same 
period (Kalnay, 2003). The assimilation process is repeated 
every 6 h, forecasting 6 h ahead, i.e. 4 times a day, but at the 
00:00 UTC assimilation update the model continues to forecast 
48 h ahead.

15 km no-DA
The 15 km horizontal resolution run has a much smaller 
domain (Fig. 2b), than the 12 km resolution runs. It is set up to 
cover only the South African domain, from 22ºS to 35ºS and 
15ºE to 34ºE, making it computationally less expensive. This 
configuration uses no data assimilation, but also uses the 18:00 
UTC forecast from the UM Global Model to provide 00:00 
UTC initial conditions.

CCAM
The conformal-Cubic Atmospheric Model (CCAM) was 
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developed by the Commonwealth Scientific and Industrial 
Research Organisation (CSIRO) in Australia (McGregor, 
19962005a, 2005b; McGregor and Dix, 2001, 2008). CCAM 
is a variable-resolution global model, that may be applied 
either in quasi-uniform mode to function as a global circula-
tion model, or, alternatively, in stretched-grid mode to provide 
high-resolution forecasts over an area of interest. The model 
solves the hydrostatic primitive equations using a semi-implicit 
semi-Lagrangian method (McGregor, 2005). Engelbrecht et al. 
(2009) and Engelbrecht et al. (2012) have illustrated that CCAM 
is capable of satisfactorily simulating many attributes of the 
present-day climatological conditions over southern and tropi-
cal Africa. The model has also been shown to produce skilful 
short-range and seasonal forecasts over the southern African 
region (Potgieter, 2006; Ghile and Schulze, 2010; Landman 
et al.,, 2009; Landman et al., 2010, Engelbrecht et al.,, 2011). 
CCAM became operational at the Council for Scientific and 
Industrial Research (CSIR) in 2010, so that hindcast data were 
created in order to perform verification studies for the three 
summer half-years relevant to this study. In operational mode, 
the CCAM is initialised at 00:00 UTC, using initial condition 
fields obtained from the Global Forecast System (GFS). Two 
different 7-day forecasts are produced daily using the 00:00 
UTC initial state. A forecast that has a resolution of about  
60 km over southern and tropical Africa is performed first 

(Fig. 2c). In order to obtain this forecast the model is applied 
in stretched-grid mode over southern and tropical Africa, with 
the resolution decreasing to about 400 km in the far-field. A 
high-resolution forecast is subsequently performed using a 
more strongly-stretched grid that provides resolution of 15 km 
over southern Africa, with this run nudged within the 60 km 
forecast. Hindcasts for the three half-years under considera-
tion were performed using a set-up that mirrors the operational 
forecasting system. For both the 60 km and 15 km hindcasts, 
model output is available at 6-hourly time-steps over a domain 
that covers southern and tropical Africa. All the hindcasts were 
performed on the Sun Hybrid System of the Centre for High 
Performance Computing (CHPC) in South Africa.

Rainfall data

South Africa is primarily a summer rainfall region, with only 
the southwestern Cape being a winter rainfall region (Tyson, 
1986). For the three summer seasons under consideration, 24-h 
rainfall totals were calculated from rain gauge observations 
originating from automatic and manual weather stations of 
SAWS and the Agricultural Research Council (ARC). Figure 2 
indicates the distribution of the combined observation network 
of SAWS and the ARC over South Africa, as used in this study. 
The rainfall totals were accumulated over the 24-h periods 
from 06:00 UTC on a given day, to 06:00 UTC the next day, in 
correspondence with the time at which observations are made 
at manual weather stations managed by SAWS. As all of the 
NWP forecasts utilised in this study were initialised at 00:00 
UTC, the 6 to 30 forecasts corresponding to the rain gauge 
accumulations were used as a basis for comparison. 

In order for the numerical precipitation forecasts to be 
directly compared to the observed rainfall, the rainfall totals 
recorded at the weather station locations are processed into a 
latitude-longitude gridded field. Due to the sparse distribution 
of stations, it is not meaningful to construct a country-wide 
grid at a resolution finer than about 0.25°. The rainfall value 
per grid box at this resolution is calculated, using a box-average 
technique (Peel and Wilson, 2008), which simply averages all 
of the rainfall values within the grid box. This procedure has 
been shown to successfully represent station data on the same 
grid as that of the numerical weather prediction output (Peel 
and Wilson, 2008). The number of rainfall stations used in 
the calculation of the average grid-box value varies across the 
country with the availability of rainfall stations in the geo-
graphical area demarcated by the grid box. In cases where no 
stations are present within a specific grid box, the grid box is 

 

 
Figure 2

Domain size maps of the individual members of the multi-model ensemble system:
(a) UM 12 km resolution members, (b) UM 15 km resolution member and (c) CCAM members. 

Figure 1
Location of rainfall stations in the combined SAWS-ARC data set
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excluded from the subsequent verification calculations. It can 
be expected that the results of the verification will be sensitive 
to the number of stations per grid box. For this study, the mini-
mum number of stations required to be present within a grid 
box was chosen to be 1. With a minimum number of at least 
2 stations per grid box, the grid would have fewer samples, 
particularly in sparsely-covered regions (i.e. Northern Cape), 
and the results would be skewed toward more populous regions 
of South Africa (i.e. Gauteng and Western Cape). Even with a 
grid box represented by only one station, which in turn has the 
characteristics of a point measurement, making comparison 
with a model grid box average more problematic, the greater 
number of valid observational grid boxes was chosen to be the 
better option for the purpose of this study.

Methodology

Construction of the multi-model ensemble prediction 
system

An ensemble of forecasts, to some extent, describes the uncer-
tainties pertained in single-model forecasts (Zongjian, 2008; 
Kalnay, 2003). The multi-model ensemble system (MMENS) 
presented here is formulated with the purpose of predicting 
the probability of precipitation exceeding pre-determined 
thresholds, over a 24-h period, from 06:00 UTC to 06:00 UTC. 
Although each of the individual members of the multi-model 
ensemble described in the following sections covers a bigger 
domain than South Africa (22º to 35ºS and 16ºE to 33ºE), the 
spatial extent of the SAWS and ARC observational network 
limits the verification analysis to South Africa. The model 
output was re-gridded to the same (coarser than the model reso-
lution) horizontal resolution of 0.25° over the South African 
domain as applicable to the observational data.

Different 24-h rainfall total thresholds are considered in 
order to formulate dichotomous forecasts for each threshold 
value: That is, for a given threshold a value of zero is assigned 
to the forecast if the threshold is not exceeded and a value of 1 
if the threshold is exceeded. In this paper the threshold values 
of daily rainfall totals considered are 1 mm and 10 mm, with 
the latter representing significant rainfall events. Ebert (2001) 
noted that a 1 mm/day threshold is useful in the construction of 
gridded rainfall fields, in order to eliminate dew and insignifi-
cant rain. The forecast accuracy and skill in predicting rainfall 
occurring at or above each of the various thresholds are subse-
quently investigated.

The MMENS is constructed from the previously men-
tioned forecasts from the UM and CCAM. The skill of the 
single-model ensemble forecasts is compared to the MMENS 
forecasts and the influences of each of the single-model ensem-
ble systems on the MMENS forecast accuracy and skill are 
described. Only days for which all of the ensemble members 
are available were used in the analysis. 

The individual members of the single-models contribute 
with equal weights to the respective single-model ensemble 
systems. The UM ensemble (UMENS) is created by adding the 
dichotomous forecasts at the grid points for each of the three 
individual members, and then dividing by N (the number of 
model configurations – three in this case). Symbolically: 
 

The same process is repeated for the CCAM ensemble 
(CCAMENS), by adding the dichotomous forecasts of the two 

deterministic forecasts and then dividing by N = 2:

The MMENS is then created by applying equal weights to the 
two single-model ensemble systems described above. 

That is, the output from the UMENS is added to that of the 
CCAMENS and the total is then averaged, so that both models 
contribute equally to the MMENS.

Verification metrics

The score for the two thresholds is calculated over the total 
18 months of the three summer seasons. For a more detailed 
description of the results for individual months see Landman 
(2012). 

The forecast bias is calculated in order to determine 
whether the ensemble systems have a wet (positive) or a dry 
(negative) bias. The forecast bias (                                    ) 
explores whether a variable under consideration is system-
atically over-forecast or under-forecast, and is a measure of 
forecast accuracy. The perfect forecast would have a bias of 0. 
Here N represents the total number of forecasts issued for the 
period considered.

A contingency table (Table 1) approach is used for deter-
mining the performance of the dichotomous forecasts by  
calculating the Frequency Bias Index (FBI; FBI             ),  
Probability of Detection (POD; POD               ), False Alarm  
Rate (F; F            ) and the Critical Success Index (CSI;  
CSI                  ). Each of these verification scores are calculated 
for different thresholds. For each forecast or observation for 
which the threshold is exceeded, the corresponding contin-
gency table value becomes ‘yes (or 1)’ and ‘no (or 0)’ if the 
threshold is not exceeded. The forecast is then analysed using 
the contingency table which shows the frequency of ‘yes’ and 
‘no’ forecasts, relative to the observed occurrences (Joliffe and 
Stephenson, 2003; Wilks, 2006; Fawcett, 2008 – see Table 1). 
The series of verification statistics obtained in this way, for 
various threshold values, gives an indication of the forecast’s 
ability to correctly predict the occurrence as well as the amount 
of rainfall (Ebert, 2001). This process is applied separately 
to the different ensembles that were formulated. Usually, the 
contingency tables are set up to explore the average forecast 
performance over a model domain. This has the disadvantage 
that the verification scores represent an area average (Ebert, 
2001) and cannot distinguish between different geographical 
locations of the domain or different weather regimes. For this 
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Table 1
The contingency table for the analysis of 

dichotomous forecasts
OBSERVED

YES NO

FORECAST
YES a b forecast yes
NO c d forecast no

observed yes observed no TOTAL
a : HITS – the event was forecast and observed
b : FALSE ALARMS – the event was forecast but not observed
c : MISSES – the event was not forecast but observed
d : CORRECT NEGATIVES – the event was neither forecast not 
observed

(

  FBI
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reason, a contingency table is set up for each grid box in the 
domain, and the scores calculated to present forecast perfor-
mance at each grid box. In this manner the spatial patterns of 
the forecast performance can be evaluated. In this paper, only 
the area-average values will be presented, with the spatial 
details provided by Landman (2012). 

For probability forecasts of dichotomous events the verifi-
cation metrics consisted of the Brier skill score (BSS; Stanski 
et al., 1990), the reliability diagram (Jollife and Stephenson, 
2003; Wilks, 2006) as well as the relative operating character-
istic (ROC; Jollife and Stephenson, 2003; Wilks, 2006). These 
metrics give almost a complete diagnostic evaluation of fore-
cast performance (Peel and Wilson, 2008). 

The BSS (Stanski et al., 1990) is derived from the Brier 
score (BS; Wilks, 2006, Fawcett, 2008). The BSS answers the 
question related to the relative skill the probability forecast 
(predicting whether the event occurred or not) has over that 
of the persistence (reference) forecast (Mason, 2004). The BS 
consists of the mean squared error in the probability forecast ƒi

                  

Here ƒi assumes a value of 1 if the event was forecast and zero 
if the event was forecast not to occur. Similarly, a value of 1 is 
assigned to oi if the event did occur and zero if the event did 
not occur. The three independent terms of the Brier score are 
also calculated and are indicated in (2). 

Here oi is the number of times the events was observed, ok 
for each of the forecasts made for each probability, Ni, oi is the 
mean of all of the observations and yi is the mean of all of the 
forecasts (Wilks, 2006).

                  

The reliability term needs to be as small as possible, which 
will indicate a well-calibrated forecast because it summarises 
the conditional bias of the forecast. The resolution term needs 
to be as large as possible, which will indicate that the forecast 
resolves the event strongly because it summarises the ability of 
the forecasts to discern between events. The uncertainty term 
is only dependent on the climatological frequency of an event 
occurring and therefore is not influenced by the forecast.

In this paper the BSS is obtained by (3) since it has the 
advantage of being independent of the manner in which the 
forecasts are binned, where BSref is the Brier score with persis-
tence as the reference forecast.

                 

The relative operating characteristics determine the discrimi-
nation of the forecast between events and non-events. The 
area under the ROC curve is calculated here with the trap-
ezoid method; this value depends on the degree of separation 
of distribution of forecast probabilities, conditional on the 
occurrence of the event from the distribution, conditional on 
non-events. (Wilks, 2006; Clark et al., 2008; Peel and Wilson, 
2008).
 The reliability diagram represents the relationship between 
the observed frequency and the forecast probability of an event 
(Joliffe and Stephenson, 2003; Wilks, 2006). The reliability 
diagram is a good companion to the ROC curve, where the 
reliability diagram is conditioned on the forecast. The reliabil-
ity diagram shows what the observed frequency is, given the 
forecast probability for that event to occur. 

Together with the reliability diagram, a sharpness or 
frequency diagram is constructed where the forecast probabil-
ity bins are plotted against the frequency of the event forecast 
within each probability bin (over the verification period and at 
all the grid points). The sharpness diagram is an indication of 
the confidence of the forecast system under investigation.

Results

The average bias in predicted 24-h rainfall totals calculated 
over the three summer seasons for each of the ensemble sys-
tems is shown in Fig. 3 (a) to (c). The map of the bias provides 
insight into the location of areas with relatively high and low, 
as well as positive (blue shades) and negative (red shades), 
biases. Considering the three maps, it is noticeable that all three 
ensemble systems generally have positive biases over the entire 
domain, indicating too much rain being forecasted. The spatial 
average bias was calculated for each of the ensemble systems 
and the value is given on the maps in Figs. 3 (a) to (c). It is seen 
in Fig. 3 (c) that the CCAMENS has the lowest average bias 
(0.63 mm/day) of all three systems, whereas the UMENS has 
the highest daily average bias of ~0.98 mm/day.  

Considering the contingency table related scores, the 
UMENS generally outscores the MMENS with the lower 
threshold value of 1 mm/day, whereas the MMENS outscores 
both the single model ensemble systems with the 10 mm/day 
threshold values. The exception to this is the POD values, 
where the UMENS has a slightly higher detection rate for the 
10 mm/day events than the MMENS (Table 2).
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Figure 3

The spatial maps for the daily bias for the three ensemble systems: (a) UMENS, (b) CCAMENS and (c) MMENS

(1)

(2)

(3)
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In Fig. 4, the BSS is presented spatially with a score value 
at each of the grid boxes. Figures 4 (a) – (c) represent the 
BSS for each of the three ensemble systems for the 1 mm/
day threshold and Figs. 4 (d) – (f) the BSS for the 10 mm/day 
threshold. On each of the maps, the percentage of grid points 
with positive BSS values is provided. This number gives an 
indication of the percentage of grid points over the domain 
that has skill over that of the persistence (reference) forecast. 
Therefore, the greater this number, the greater the skill of the 
forecast is for the 18-month period. 

Similar to the scores calculated with the contingency table, 
the MMENS is outscored by both UMENS and CCAMENS 
in terms of the percentage positive BSS grid boxes for 1 mm/
day threshold, but it is more skilful than the single-model 

systems for the 10 mm/day threshold. None of the three sys-
tems have any skill over the interior and west-coast of the 
country in predicting rainfall greater than 1 mm/day but have 
some skill over persistence for the remaining coastal regions. 
The MMENS only has 16.6% skilful grid boxes compared to 
21.6% for the UMENS at the 1 mm/day threshold, but for the 
important 10 mm/day threshold the MMENS outscores the 
two single-model systems, having skill over 72.2% of the total 
number of grid boxes. The results, as depicted in Fig. 4, have 
a significant bearing on operational weather forecasting, since 
they show that there is a better chance of success in forecasting 
rainfall exceeding the 10 mm/day thresholds as opposed to the 
low threshold of 1 mm/day. Weather forecasters and other users 
of NWP rainfall forecasts should therefore take care with the 
interpretation and use of low threshold value forecasts. 

The ROC curves for all three ensemble systems are pre-
sented in Fig. 5. In contrast to the low skill determined by the 
BSS for the 1 mm/day threshold events, the MMENS shows the 
best discrimination for these events, indicating the multi-model 
ensemble’s improved ability to distinguish between rainfall 
and non-rainfall events (ROC areas > 0.6). Furthermore, the 
scores obtained by the MMENS for the 1 mm/day and 10 mm/
day thresholds are comparable, indicating that the MMENS can 
skilfully distinguish between events and non-events for both 
thresholds studied. 

Considering the ROC values in Table 3, it can be argued 
that the single-model ensemble systems also display good 
discrimination abilities for both thresholds and that both 
single-model systems are skilful for these thresholds during 
the summer season. It is interesting to note that, although the 
CCAMENS scores systematically lower than the UMENS, the 
MMENS forecasts are more skilful than any of the constituting 

Table 2
Summary of the area average values of the verification 
scores calculated from the contingency table for both 
the threshold values as well as for all three ensemble 

systems. The best verification score is indicated in bold 
for each of the systems.

Verification 
metric

UMENS CCAMENS MMENS
1 mm/

day
10 mm/

day
1 mm/

day
10 mm/

day
1 mm/

day
10 mm/

day
FBI – 1 
mm/day 2.515 1.417 2.629 1.213 2.797 1.211

CSI – 1 
mm/day 0.362 0.216 0.340 0.187 0.352 0.225

FAR – 1 
mm/day 0.309 0.057 0.330 0.049 0.38 0.047

POD – 1 
mm/day 0.823 0.393 0.807 0.323 0.862 0.371

 

Figure 4
The spatial maps for the Brier skill score for the three ensemble systems. a) UMENS, (b) CCAMENS and (c) MMENS represent the 

Brier skill score with 1 mm/day threshold and (d) UMENS, (e) CCAMENS and (f) MMENS 10 mm/day threshold. 
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single-model ensembles. This result may be due to the 
CCAMENS having only 3 possible outcomes for each proba-
bilistic forecast at a given location (0, 0.5 or 1), whilst there are 
4 possible outcomes for the UMENS and 12 for the MMENS. 
It is a significant result, which indicates the value of a multi-
model ensemble system over single-model systems.

The ROC analysis has shown that the MMENS system 
is the most suitable to discriminate between rainfall events 
exceeding predetermined thresholds and events that do not 
reach these thresholds. Hence, reliability diagrams are only 
presented for this system (Fig. 6). The diagram shows that the 
MMENS system exhibits over-confidence for both thresholds. 
Considering the 1 mm/day threshold (blue line) the system is 
under-forecasting the events with low probabilities and over-
forecasting for higher probabilities (< 70%). The 10 mm/day 
threshold (green line) has slightly better reliability but is over-
forecasting the events with probabilities > 30%. The sharpness 
diagrams in Fig. 6 show that for both thresholds the MMENS 
has high confidence. In all of the threshold events, the high-
est number of forecasts is made in the lower probability bins, 
with some increase with the 10 mm/day threshold events in the 
higher probabilities.

In order to accurately determine the difference between 
the three systems, the reliability, resolution and uncertainty 
are calculated for both threshold values and represented in 
Table 3. For the events exceeding the 10 mm/day threshold, the 

MMENS has a better resolution, but for those events exceeding 
1 mm/day, the UMENS has better resolution. For reliability, the 
MMENS outscores at the lower threshold, but the CCAMENS 
is the most reliable of the three systems with 10 mm/day events. 
The same holds true for the uncertainty of the systems, except 
that the uncertainty is the lowest with the UMENS at 10 mm/
day threshold.

In terms of the skill for each of the ensemble systems, the 
three systems are skilful in predicting rainfall for the South 
African domain. However, all three of the systems are less skil-
ful in predicting low threshold events (1 mm/day) compared to 
higher threshold (10 mm/day) events. The multi-model’s ability 
to distinguish between events and non-events is greater than 
that of the two single-model ensemble systems. The multi-
model ensemble system can possibly be improved by removing 
the model errors through increased ensemble members as well 
as through the use of a weighted combination method that con-
siders the relative skill of the individual contributing ensemble 
members.

Discussion and conclusions

Weather forecasters at operational centres such as SAWS are 
often faced with the challenge of making reliable site-specific 
probabilistic rainfall forecasts for the next day or two. The 
forecaster is presented with different forecasts, either from 

 

Table 3
Summary of the resolution, reliability and uncertainty scores as calculated by the three terms  
of the Brier skill score for both the threshold values as well as for all three ensemble systems. 

The best score is indicated in bold for each of the systems.
Verification 
metric

UMENS CCAMENS MMENS

1 mm/day 10 mm/day 1 mm/day 10 mm/day 1 mm/day 10 mm/day

ROC Score 0.719697 0.724556 0.648406 0.674402 0.765278 0.762357

Resolution 0.370072 0.076532 0.306917 0.178127 0.130799 0.248717

Reliability 0.069963 0.158378 0.079857 0.044348 0.04625 0.128062

Uncertainty 0.236747 0.224744 0.209404 0.235932 0.178549 0.241282

Figure 5
The ROC curves for all three ensemble systems. The UMENS curve is in blue, the CCAM in green and the MMENS in red. 

The two threshold values are represented by (a) 1 mm/day and (b) 10 mm/day respectively. 
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different configurations of the same weather forecast model, or 
from different models or a combination of both. The forecaster 
has to combine the various forecast outputs into a probability 
statement, which is done in a highly subjectively way and is 
often based on a forecaster’s own perceptions or preference for 
a particular model. A method combining forecasts through a 
simple un-weighted approach into a single objective probability 
forecast is presented here. These forecasts were verified over 
three 6-month summer seasons.

The results show that combined forecasts from differ-
ent forecast systems generally outscore forecasts from the 
individual models. Care should however be taken when using 
this multi-model system in predicting low threshold values 
(i.e. 1 mm/day). In fact, the systematic overestimation of 
rainfall by all three ensemble systems over the interior of 
South Africa, the absence of skill in predicting the occur-
rence of rainfall above the 1 mm threshold event, and rela-
tively poor performance of all systems in predicting events 
above the 10 mm threshold over the central interior of South 
Africa, warrant research into the improvement of convective 
rainfall parameterisations, and, perhaps the application of 
non-hydrostatic models at very high resolution, over South 
Africa (e.g. Engelbrecht et al., 2007). The paper has also 
demonstrated the attributes of combining forecasts produced 
by different institutions running different forecast models, 
and therefore suggests that additional models’ outputs may be 
considered for inclusion in a multi-model system for further 
improved operational weather forecasting in South Africa. 
Additional forecast outputs to consider includes forecasts 
from the Weather and Research Forecast model (to be used 

as operational model at SAWS and also run at the University 
of Pretoria), the NCEP ensemble, and possibly forecasts from 
the European Centre for Medium-Range Weather Forecasts. 
However, for the system in this study to be optimised fully, it 
will be necessary for the model errors identified to be corrected 
within each of the ensemble members, before constructing an 
improved multi-model system.  

Apart from improving on model physics and numerical 
schemes, future NWP research in South Africa should address 
the best way to weight forecasts form different models, down-
scaling or recalibrating forecasts (since it was shown here that 
the different models have different systematic errors), and the 
use of larger forecast ensembles. In addition, the use of even 
higher resolution forecasts beyond the hydrostatic limit should 
be considered, as convective rainfall is such a dominant feature 
of South Africa’s climate, and the value of more advanced data 
assimilation techniques quantified. 
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