
275

http://dx.doi.org/10.4314/wsa.v43i2.11
Available on website http://www.wrc.org.za
ISSN 1816-7950 (Online) = Water SA Vol. 43 No. 2 April 2017
Published under a Creative Commons Attribution Licence

Modelling the effect of land use change on hydrological model 
parameters via linearized calibration method in the upstream of 

Huaihe River Basin, China

Wei Si 1,2,3*, Weimin Bao3, Simin Qu3, Minmin Zhou3, Peng Shi1,3, Xiaoqiang Yang4

1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China 210098
2Business School of Hohai University, Nanjing, 210098, China

3College of Water Resources and Hydrology, Hohai University, Nanjing, 210098, China
4Helmholtz Centre for Environmental Research -UFZ, Brückstrasse3a, Magdeburg,39114, Germany

INTRODUCTION 

Conceptual rainfall–runoff models have been widely used for 
quantification of the effect of land use and land cover change 
on runoff dynamics (Burns et al., 2005; Jiang et al., 2004, Wan 
and Yang, 2004; Wang et al., 2007; Yuan and Shi, 2001; Zhang et 
al., 2004). The runoff-producing mechanism and hydrological 
response will be influenced by land use/cover changes, and this 
influence can be reflected by the calibrated parameter values 
of different time periods (Tao et al., 2015; Zhang et al., 2016; 
Zhong-Bo et al., 2014). A good model performance is critical 
to evaluate the effect of land use/cover change on hydrological 
processes. The major difficulty is that these models generally 
have a large number of parameters that cannot be obtained 
directly from field measurements; hence, model calibration is 
needed (Chen and Chau, 2006; Wang et al., 2009; Wu et al., 
2009). The process of model calibration is normally done either 
manually or by using computer-based, automated procedures. 
Because of the time-consuming nature of manual calibration 
and the difficulty in explicitly assessing the confidence of model 
simulations, automation of the calibration process has been 
explored (Gupta et al., 1998; Gupta et al., 1998; Hendrickson 
et al., 1988; Johnston and Pilgrim, 1976; Yapo et al., 1996). 
Research into automated optimization methods has led to 
the development of stochastic global optimization searching 

methods based on extending the search area or increasing 
the number of initial optima (Cheng et al., 2002; Cheng et al., 
2008; Duan et al., 1992; Franchini, 1996; Franchini and Galeati, 
1997; Ritzel et al., 1994; Savic et al., 1999; Vasquez et al., 2000; 
Wang, 1991).

Rainfall–runoff model calibration is a highly complex 
nonlinear problem (Chau, 2007; Cheng et al., 2005; Muttil and 
Chau, 2006; Taormina et al., 2012). A successful calibration 
depends not only on effective optimization methods, but also on 
the calibration objective. Minimum-sum-squared error (MSSE) 
has been widely used as an objective function (Bárdossy and 
Singh, 2008; Bao, 1991; Bao et al., 2004; Rusli et al., 2015; Zádor 
et al., 2006). This objective function has been shown to work 
well in linear parameter calibration, which has been proved 
to attain the unique optimal value. However, it will introduce 
an unrelated local optimal into parameter calibration of the 
nonlinear function.

Therefore, a more convenient and efficient method for 
parameter estimation of hydrological models is to study 
the hydrological model parameters, model structure and 
hydrological simulation. In this paper, a methodology for 
system decomposition and degeneration of dimensionality has 
been developed in the calibration of the Xinanjiang model. The 
objective of degeneration is to reduce the number of parameters 
being optimized simultaneously to at least 3 or fewer. An ideal 
model was used to verify the efficiency and applicability of this 
method. Finally, this linearized calibration method was applied 
for Xinanjiang model parameter calibration to evaluate the effect 
of land use/cover change on the runoff of the upper Huaihe 
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ABSTRACT
Conceptual rainfall–runoff models have become a basic tool for evaluating effects of land use/cover changes on the 
hydrologic processes in small-scale as well as large watersheds. The runoff-producing mechanism is influenced by land use/
cover changes. In this study, we analysed the effect of land use change on hydrological model parameters by calibrating 
the model parameters of different time periods with different land use via a linearized calibration method. The parameter 
calibration of a conceptual model usually involves the construction of objective function and optimization methods for 
good performance of observed data. However, the objective function of the minimum-sum-squared error will introduce 
an unrelated optimum solution for the parameter calibration problem of a conceptual model, which belongs to a highly 
complex nonlinear system. Thus, a linearized parameter calibration method, which searches for the optimal value on a 
parameter surface, is presented, based on the analysis of the problems of the objective function of the minimum-sum-
squared error. Firstly, an ideal model is shown that illustrates the efficiency and applicability of this method. Secondly, the 
novel method is demonstrated for solving the Xinanjiang daily model parameter calibration. Finally, 50 years of data are 
divided into 4 different periods for parameter comparison, through which the effects of land use/cover changes on runoff 
in Dapoling watershed are evaluated. The results show that the linearized parameter calibration method is convergent, 
reasonable and effective. For example, the model parameter of evapotranspiration coefficient KC varied considerably, from 
0.658 to 0.922, in response to land use/cover change within the watershed. 
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River Basin. We only compare the best calibrated parameters 
of different periods to assess the influence of land use change 
on runoff generation via this fast and convenient parameter 
calibration method. Model parameters might be different when 
the model is calibrated to different time periods. The change of 
land use and the impact on hydrological response processes are 
analysed by the model parameters at different stages. 

METHODS

The Xinanjiang model

The Xinanjiang model (Zhao, 1992) was chosen for the study. 
The primary feature of the Xinanjiang model is the concept 
of runoff formation on repletion of storage, which means 
that runoff is not produced until the soil moisture content of 
the aeration zone reaches field capacity. The hypothesis was 
first proposed in China in the 1960s, and much subsequent 
experience supports its validity for humid and semi-humid 
regions. According to the original formulation, runoff generated 
was separated into 2 components using Horton’s concept of a 
final, constant, infiltration rate. Infiltrated water was assumed to 
go to the groundwater storage and the remainder to surface or 
storm runoff. However, evidence of variability in final infiltration 
rate, and the unit hydrograph to connect the storm runoff to the 
discharge from each sub-basin, suggested the necessity of a third 
component. Guided by the work of Kirkby (1978), an additional 
component, interflow, was provided in the model in 1980 (Zhao, 
1992). The modified model is now successfully and widely used 
in China (Guo et al., 2016; Ju et al., 2009; Yao et al., 2012).

In the Xinanjiang model, the basin is divided into a set of 
sub-basins. The outflow from each sub-basin is first simulated 
and then routed down the channels to the main basin outlet. 
The flow chart is shown in Fig.1. Based on the concept of runoff 

formation on repletion of storage, the simulation of outflow from 
each sub-basin is computed in 4 major steps:

1.	 Evapotranspiration and runoff production: the 
evapotranspiration that generates the deficit of the soil 
storage is divided into 3 layers: upper, lower, and deep; the 
runoff production that produces the runoff according to the 
rainfall and soil storage deficit.

2.	 Separation of runoff components: the runoff separation 
that divides the previously determined total runoff into 
3 components: surface runoff, subsurface runoff, and 
groundwater runoff.

3.	 Overland flow concentration within each sub-basin: 
this is represented by the convolution with an empirical 
unit hydrograph or by linear reservoir to produce Q, the 
sub-basin outflow. In this paper, we calculate the surface 
flow, interflow and groundwater of sub-basin outflow. 
Respectively, by linear reservoir (parameters CS, CI and CG 
in Fig. 1).

4.	 River network flow concentration: flood routing from the 
sub-basin outlets to the total basin outlet is achieved by 
applying the Muskingum method to successive sub-reaches 
(parameters KE and XE in Fig. 1).

The flow chart for the Xinanjiang model is given in Fig. 1. 
The inputs of the model were rainfall (P) and measured pan 
evaporation (EM). The outputs were the discharge (TQ) from 
the whole basin and the actual evapotranspiration (E), which 
includes 3 components, EU, EL, and ED.

The state variables were the area mean tension water storage 
(W) and the area mean free water storage (S). The area mean 
tension water (W) had 3 components (WU, WL, and WD) in the 
upper, lower, and deep layer. FR is the runoff-contributing area 
factor that was related to W. The rest of the symbols inside the  

 4 

 

Figure 1 
Flow chart for the Xinanjiang model: all symbols inside the blocks are variables, including inputs, 
outputs, state variables, and internal variables, whereas those outside the blocks are parameters. 
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blocks were all internal variables. RB was the runoff directly from 
the small portion of impervious area. R was the runoff produced 
from the pervious area and divided into 3 components (RS, RI, 
and RG), referred to as surface runoff, subsurface runoff, and 
groundwater runoff, respectively. The three components were 
further transferred into QS, QI, and QG, and together form the 
total inflow to the channel network of the sub-basin. The outflow 
of the sub-basin was Q. Then, the Muskingum method was used 
to calculate the discharge (TQ).

The model had 16 parameters: evapotranspiration 
parameters K, WUM, WLM and C; runoff production 
parameters WM, B and IMP; parameters of runoff separation 
SM, EX, KI and KG; runoff concentration parameters CS, CI 
and CG; Muskingum parameters KE and XE. The details of the 
Xinanjiang model and the parameter calibration refer to  
Qu et al. (2012). There are 14 parameters used in the 
Xinanjiang model. Additionally, another 2 parameters are 
used for flow routing along the main rivers (see Table 1 for a 
list of the 16 model parameters). Generally, the output is more 
sensitive to 9 parameters (Zhao 1992):  KC, SM, KI, KG, CS, CI, 
CG, KE and XE. For the daily model, there are only 4 sensitive 
parameters, that is, KC, SM, KI and KG (Song et al., 2013; 
Zhijia et al., 2011).

Change detection (parameters comparison)

Qu et al. (2012) used 3 different methods to evaluate the land 
use/cover change effects on hydrological processes in Dapoling 
basin. In this study, we only compare the best calibrated 
parameters of different periods to assess the influence of land use 
change on runoff generation.

Model parameters might be different when the model is 
calibrated to different time periods. The Xinanjiang model 
consists of 16 parameters, and 9 of these (KC, SM, KI, KG, CS, 
CI, CG, KE, XE) (Table 1) are very sensitive to the calibration 
process (Song et al., 2013; Zhao, 1992; Zhijia et al., 2011). As 
a result, the calibration process is time consuming. To reduce 

this complexity, a methodology for system decomposition 
and degeneration of dimensionality has been developed in 
the calibration of the Xinanjiang model. By decomposition, 
the model structure is analysed hierarchically. The calibration 
is carried out from a lower to higher hierarchy; to this end, 
different objective functions are used for different levels. The 
objective of degeneration is to reduce the number of parameters 
being optimized simultaneously to at least 3 or fewer. The 
reduction is based on the sensitivity analysis and structure 
constraint. For example, there is a daily model and an hourly 
model for the Xinanjiang model. The objective function for the 
daily model is to keep the mean annual water balance, which 
means KC is the most important parameter that needs to be 
calibrated. Those insensitive parameter values (e.g. WUM, WLM, 
C and so on) can be chosen by experience. In this study, the daily 
model and linearized parameter calibration method are used for 
automatic parameter calibration of the Xinanjiang model. 

Linearized parameter calibration method

The linearized calibration method is a new optimization 
algorithm. It was developed to solve the theoretical problem 
of unrelated local optima produced in the nonlinear model 
parameter calibration by using the objective function based on 
error sum of squares. The calibrated parameter values are stable 
when using different initial parameter values via the linearized 
calibration method, which can find the true parameter values 
without producing unrelated local optima. Furthermore, 
compared with the SCE-UA method and the simplex method, 
the linearized calibration method has higher calculation 
accuracy and convergence rate and the parameter calibration 
results are also very stable, i.e., not influenced by the different 
initial parameter values. In the real model study, the method can 
also find the unique global optima and has good performance 
in parameter calibration. The linearized calibration method is 
an efficient, effective, and robust calibration method (Bao and 

TABLE 1
Model parameters and variation ranges

Parameter Explanation Unit Lower bound Upper bound
Evapotranspiration calculation
KC Ratio of potential evapotranspiration to the pan evaporationww 0.6 1.2
WUM Tension water capacity of upper layer mm 5 20
WLM Tension water capacity of lower layer mm 60 90
C Deeper evapotranspiration coefficient 0.08 0.18
Runoff generation calculation
WM Areal mean tension water capacity mm 120 220
B Exponential of the distribution of tension water capacity 0.1 0.4
IMP Ratio of impervious area to the total area of the basin 0.01 0.02
Water source separation
SM Free water storage capacity mm 10 50
EX Exponential of distribution water capacity 1 1.5
KG Groundwater outflow coefficient of free water storage 0.2 0.6
KI Interflow outflow coefficient of free water storage 0.2 0.6
Concentration calculation
CS Recession constant of surface water storage 0.4 0.7
CI Recession constant of interflow storage 0.5 0.9
CG Recession constant of groundwater storage 0.990 0.998
KE Residence time of water h 0.5 1.5
XE Muskingum coefficient 0 0.5
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Zhao, 2014; Bao et al., 2013). The basic principles and derivation 
process of the linearized calibration method are as follows:

The traditional parameter estimation method is based on the 
objective function of the minimum-sum-squared error. For any 
function f:

),( Xff θ=   	 (1)

where: θ is parameter vector, X is independent variable vector. 
The objective function of minimum-sum-squared error is 
constructed as:

2
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where: { }, ; 1, 2, ,i iX f i L=   is the sample series for parameter 
calibration. It can be observed that Eq. 2 increases the power 
of linear parameter from 1 to 2 and for a linear function this is 
clearly correct. However, the sum-squared causes the increase 
in unrelated optimal values when solving nonlinear function 
parameter optimization problems. For example, if the power 
of parameters is equal to or greater than 2, sum-squared will 
double the power of parameters, which will be reduced only by 1 
through first-order derivation – thus, it will increase the number 
of parameter solutions. A 1-parameter function with 1 sample 
is employed to demonstrate the problem. It can be seen from 
the analysis that the objective function of the minimum-sum-
squared error works well in parameter optimization for a linear 
function; however, this is not the case for a nonlinear function. 

Based on this analysis, we developed a linearized parameter 
calibration method. Firstly, we linearize the nonlinear function 
using parameters as independent variables. Secondly, the 
linearized parameters can be calibrated with the objective 
function of minimum-sum-squared error. Finally, iteration is 
adopted to gradually approach the optimal value of nonlinear 
function parameters.

The forward difference of the partial derivative of f as in Eq. 1 
with respect to parameter θi:
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Eq. 5 shows the relation of the parameters, function values and partial derivation with respect to 
parameters in the adjacent 2 steps in the parameter searching process. The partial derivation with 
respect to a parameter exhibits the degree of function variation resulting from the variation of 
parameters. Usually, the greater the degree of function change, the more sensitive the parameter is in 
the function, which is called parameter sensitivity. Considering the variation of all parameters in the 
consecutive 2 steps, Eq. 5 can be transformed into: 
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Eq. 6 is the linear approximate of nonlinear function f with 
respect to parameter θ. In the process of parameter calibration, 
we assume L groups of observation samples:
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The vector matrix of Eq. 8 is:
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is called parameter sensitivity 
matrix. Eq. 9 is the linear 
approximation of actual 
function f. Substitute the 
observation sample into Eq. 9 
and it can be written as:
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ESff jjj +−+= + )( 1 θθ       	 (10)

where T
LeeeE ],...,,[ 21=  is the difference between f and fj+1.  

As the iterative process continues, the difference between f and 
fj+1 approaches a minimum. We obtain:

{ })()(min 111 +++ℜ∈
−−= j

T
jj ffffF

θ    	  (11)

where [ ]1 2, , , T
Lf f f f=   is observation vector. The optimal 

estimation value of θj+1 can be inferred from Eq. 10 in the linear 
condition:

1
1 ( ) ( )T T

j j jS S S f fθ θ −
+ = + −     	 (12)

Considering Eq. 9 is the linear approximation of actual function 
f(θ, X), which cannot guarantee that θj+1 is the optimum in the 
searching direction, a scale coefficient b needs to be multiplied 
to make the actual error function the optimum in the searching 
direction.

)()( 1
1 j

TT
jj ffSSSb −=− −

+ θθ    	 (13)

The variation range of b is (0, 1), which can be determined by 
minimum-sum-squared error of actual function:

{ }1 1min ( ( , , )) ( ( , , ))T T
j jb

e e f f b X f f b Xθ θ+ += − − 	 (14)

Eq. 12 determines the searching direction, and Eqs 13 and 14 
determine the step length of parameter, which not only ensures the 
correct searching direction, but also satisfies the minimum error in 
the searching direction. Eqs 12, 13 and 14 comprise the linearized 
parameter calibration method, which has a similar form to the 
Gauss-Newton iteration method, but a different theoretical basis.

Since the linearized parameter calibration method uses 
linear approximation of Eq. 9 as a function, the construction of 
the objective function of sum-squared error and the first-order 
derivation of objective function to search the optimum will not add 
unrelated local optima. It is proved that the linearized parameter 
calibration method can ensure the correctness of every step in 
searching direction.

Considering the error resulting from Eq. 10, the searching 
process of linearized parameter calibration method is the process 
of step-by-step approach to the optimum. Its procedure is as 
follows:

1.	 Set an initial value of parameter θ0 

2.	 Calculate the parameter sensitivity matrix S and function 
vector fj according to the parameter vector

3.	 Determine new parameter vector θj+1 and search direction ∆θ 
= θj+1 − θj with Eq. 12

4.	 Determine scale coefficient b with Eq. 14

5.	 The search will be stopped if θj+1 arrives at the optimum 
individual. If not, return to Step (2) and go on to the next 
iterative operation. The framework flow chart for the 
linearized parameter calibration method is shown in Fig. 2.

Figure 2
The flow chart of the linearized calibration method

It can be seen that the linearized parameter calibration method 
is simpler than the conventional optimization method from Step 
(3) of the calculation process. The optimal parameter vector θj+1 
can be determined through θj and linear condition using Eq. 12 
instead of the trial-and-error method.

To prove the validity of Step (3) that ensures the correct 
searching direction ∆θ=θj+1-θj, we only need to verify the error 
Fj+1 corresponding to new parameter vector θj+1 of any step 
calculated by Eq. 12 is less than Fj corresponding to the above 
step parameter vector θj. The proof is shown in Appendix 1. 

APPLICATION EXAMPLE

Ideal model verification

Nonlinear function parameter calibration refers to nonlinear 
parameter calibration of explicit function, which can obtain 
derivation with respect to parameters directly. The following 
general nonlinear parameter function is used in this paper:

21 /);( θθθ xexxf −= 	      (15)

Here, this function is adopted as the nonlinear parameter 
function, because there is only one independent variable x 
in this function and 2 parameters θ1, θ2. In addition, these 2 
parameters for the independent variables are highly nonlinear, 
and the function is relatively simple in the expression, but the 
function structure (due to the relationship between variables 
and parameters) is complex. The superiority of the parameter 
calibration method can be explained more clearly by using this 
function. 

The derivation function of a parameter is:
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Ideal model refers to the model with no error in the independent 
variable, dependent variable and parameters. We assume θ1 = 2 
and θ2 = 10 in the ideal model, as Eq. 15 and x varies in the range 
of [1, 100] with equal intervals.

Table 2 lists the process of searching parameters in every 
step, starting from a group of initial parameters (θ1,0 = 1.2427; 
θ2,0 = 49.4716). It can be seen from Table 2 that the parameters 
sought from every step follow a loop approach; the true value 
and the objective function of sum-squared error gradually 
decrease in the process of searching, as does the searching 
step length in every loop. In the beginning, sum-squared error 
and searching step length are large and they decrease sharply 
after several iterations, which demonstrates the significant 
convergence and effectiveness of the linearized parameter 
calibration method.

Table 3, on the next page, summarizes the calibration results 
starting from different initial parameter values. In the table, J is 
an iterative step for searching for optimum. 
According to the results given in Table 3:

1.	 The influence of initial parameter value is minor for 
linearized parameter calibration. The square deviation of 
a parameter decreased from the initial value of 37.2895 
and 1 804.38 to the final optima of 7.2 × 10-7 and 7.8 × 10-5, 
respectively.

2.	 The linearized parameter calibration method is objective 
with a high degree of accuracy. The relative error between 
the results and true value of every trial are 9.5 × 10-5 and 16.3 
× 10-5.

3.	 The iteration number of the linearized parameter calibration 
is low, and the effect is good. According to the results from 
Table 3, the minimum iteration number is 11, the maximum 
number is 35 and the average loop number is 20.6.

Table 4 demonstrates the calibration results with 
consideration of error in the dependent variable. The error 
was generated using a normal distribution model. The error 
proportion is the average per cent relative to the true value of 
the function f(θ; x). D is the distance between the evaluated 
parameter and the true value, calculated by Eq. 17:

2
2

2
1 )10()2( θθ −+−=D 	     (17)

According to the results from Table 4, the error of dependent 
variable has certain but little influence on the parameter 
estimation. The average of relative error distance is only 1.21%.

Case study

Dapoling Station was used as a case study application, situated in 
the upper reaches of Xixian basin with a drainage basin of 1 640 
km2; the length of its main channel is 73 km (Fig. 3).

The river flows through mountainous terrain with many 
tributaries and a steep slope; runoff is intermittent and 
vulnerable to zero flow in the dry season. There are not many 
water conservancy projects in the basin and rice is the dominant 
crop grown there, followed by wheat.

TABLE 2
The values of linearizing search in each step

Cycle number J θ1，j θ2, j F j

0 1.2427 49.4716 104 003.162
1 1.3404 22.0497 21 896.339
2 1.5067 16.0065 16 093.434
3 1.7169 12.0299 10 299.993
4 1.9406 10.0383 1 967.064
5 1.9783 10.0294 258.892
6 1.9916 10.0126 39.079
7 1.9967 10.0051 6.1208
8 1.9987 10.0021 0.971
9 1.9995 10.0008 0.155

10 1.9998 10.0003 0.025
11 2.0000 10.0001 0.004
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Figure 3
Location of the study watershed (DPL = Dapoling, CTG = Changtaiguan, 

ZGP = Zhuganpu, XX = Xixian)

TABLE 4
The results of the error ideal model parameter calibrated by 

the linearized method
Proportion 

of error F0 θ1 θ2 D F

0.05 104 732.68 1.9999 9.9531 0.0469 36.7
0.10 102 795.88 1.9956 10.053 0.0532 137.8
0.15 105 853.17 2.0093 9.9851 0.0176 301.77
0.20 104 049.51 2.0036 9.9513 0.0488 569.63
0.25 104 492.94 2.0027 9.9525 0.0476 944.49
0.30 106 575.46 2.0089 9.8865 0.1138 1 132.8
0.35 104 433.01 1.9909 10.165 0.1652 1 579.4
0.40 105 554.93 1.9833 10.182 0.1828 2 205.9
0.45 103 573.51 2.0243 9.7111 0.2899 2 481.5
0.50 110 931.04 2.0149 9.697 0.3034 2 990.5
0.60 105 255.62 1.9983 10.086 0.0860 4 230.7

Average 105 295.25 2.0029 9.9657 0.1232 1 510.1
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Xixian basin is situated in the transition zone between the 
northern subtropical region and the warm temperate zone. 
Rainfall for the flood season is mainly affected by monsoon; and 
the long-term mean annual precipitation is 1 145 mm (calculated 
by the data from 1954 to 2000). Half of the precipitation (~50%) 
falls between June and September. For further details of the 
watershed refer to Qu et al.  (2012). 

The Dapoling basin is serviced by 13 precipitation stages and 
one discharge stage (Dapoling stage). There is no evaporation 
stage in this catchment; because of this, the Nanwanevaporation 
stage data were used for the evaporation calculation. Series of 
observed data included daily precipitation of 13 rainfall stages, 
daily evaporation of Nanwan stage and daily discharge of 
Dapoling stage from 1966 to 2005. The total series were divided 
into 10-year periods for parameter calibration, 4 periods in all; 
that is, from 1966–1975, 1976–1985, 1986–1995 and 1996 to 
2005. The initial parameter values are presented in Table 5. 

Also, Table 5 shows the results of parameter calibration in 
different periods. Table 6 lists the performance of the calibrated 

TABLE 3
The results of the no error ideal model parameter calibrated by the linearized method

θ1,0 θ2,0 F0 θ1 θ2 F J

3.4177 24.3693 7.0 × 1011 1.999832308 10.00088456 6.9 x 10-3 28

1.7915 17.4012 9.0 x 104 1.999728607 10.00317219 4.4 x 10-3 12

3.0856 21.2353 1.8 x 1010 1.999762626 10.00167424 8.3 x 10-3 24

1.9876 17.6943 7.6 x 105 1.999751796 10.00313901 4.4 x 10-3 14

2.7204 6.7910 3.1 x 105 2.000286033 9.997430342 6.7 x 10-3 13

1.5509 19.6627 1.8 x 104 1.999782815 10.00131889 9.3 x 10-3 11

4.2809 28.0269 2.9 x 1015 1.999841901 10.00051831 9.9 x 10-3 35

0.9825 8.8556 7.0 x 104 1.999798566 10.00125761 7.6 x 10-3 13

2.9236 9.0509 1.5 x 107 2.000027461 10.00087218 7.8 x 10-3 17

1.7553 29.0297 1.4 x 106 1.999787343 10.00176653 4.5 x 10-3 15

2.5507 9.7885 1.6 x 106 2.000032618 10.00069936 6.4 x 10-3 15

2.4268 26.9291 3.0 x 108 1.999773288 10.00160568 7.5 x 10-3 20

4.1490 19.0226 6.6 x 1013 1.999890526 10.00056829 3.0 x 10-3 33

1.9032 6.1336 5.0 x 104 1.999809336 10.00160602 3.5 x 10-3 12

2.5548 8.0481 3.3 x 105 2.000108207 9.999409939 2.7 x 10-3 14

2.6308 24.5795 9.9 x 108 1.999735991 10.00190456 9.8 x 10-3 21

3.9853 20.5735 2.9 x 1013 1.999864084 10.00072722 4.4 x 10-3 32

2.4599 30.8056 7.2 x 108 1.999802061 10.00118197 7.9 x 10-3 21

4.3424 19.9380 5.0 x 1014 1.999905642 10.00037873 3.0 x 10-3 35

3.9952 18.9385 1.7 x 1013 1.999818607 10.00101991 7.4 x 10-3 31

2.6486 18.8275 2.5 x 108 1.999765416 10.00234184 3.5 x 10-3 20

3.5827 21.0177 1.1 x 1012 1.999888487 10.00063858 2.7 x 10-3 29

3.6108 15.0113 1.2 x 1011 1.999755857 10.00230066 4.3 x 10-3 26

3.2511 21.4369 7.8 x 1010 1.999842998 10.00103336 4.2 x 10-3 26

0.8960 27.3718 5.3 x 104 2.000038402 9.99825104 9.9 x 10-3 11

2.5298 25.1485 4.8 x 108 1.999835158 10.00121636 3.6 x 10-3 21

4.2369 25.2893 1.1 x 1015 1.999860661 10.00054026 6.7 x 10-3 35

1.9197 17.7015 4.0 x 105 1.999671436 10.00411829 7.5 x 10-3 13

37.2895 1 804.38 7.2 x 10-7 7.8 x 10-5 5.7 x 10-3 20.6

parameters. From Table 6, the calibrated parameters using 
the linearized parameter calibration method can give good 
simulation results: relative errors of 4 different periods from 1964 
to 2005 are −0.1%, 0.05%, 0.13% and −0.05%, respectively. The 
greatest relative error is 0.13% and all errors are less than 0.15%, 
which means that the proposed method is reliable in terms of 
water budgets. From Table 5, it can be seen that the change of 
the ratio of potential evapotranspiration to pan evaporation, KC, 
is highly significant, increasing from 0.658 to 0.922. A higher 
ratio means higher evapotranspiration from the basin, which 
causes a decrease in runoff. Additionally, the increase in free 
water storage capacity, SM, reflects the decrease in surface runoff. 
Although the sum of the outflow coefficient KG (free water 
storage to the groundwater flow) and KI (free water storage to 
the interflow) is kept constant, the single value of each parameter 
has changed. KI changed towards a larger proportion (increase 
of interflow), while KG decreased from 0.334 to 0.252 (Table 5), 
causing higher peak flows and a quicker recession.
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CONCLUSIONS

Streamflow at the outlet is the comprehensive response of 
the whole basin system to the input, precipitation, and thus, 
invariably, to the change of underlying surface in the basin. In 
appreciation of this fact, a number of studies have focused on 
using conceptual rainfall–runoff models to quantify the effect of 
land use and land cover change on runoff dynamics. However, 
because of the large number of parameters in the hydrological 
model, an effective automatic calibration method becomes 
important. Thus, a linearized parameter calibration method is 
presented for solving this problem. Unlike the previous study 
by Qu et al. (2012), we only use parameter comparison to assess 
the influence of land use/cover change on runoff of the basin. 
Compared to the method based on the error square sum, the 
linearized parameter calibration method has the following 
advantages:

•	 It can solve the theoretical problem of added unrelated local 
optimums

•	 The convergence of the method can be strictly proven in 
theory

•	 The determination of seeking direction and step length is 
objective and effective

In addition, this method was applied for parameter 
calibration of the Xinanjiang model in the upper Huaihe 
River Basin to evaluate the effect of land use change on 
hydrological processes through the change of parameters, for 

example, KC, SM, KI and KG. An increase in KC means higher 
evapotranspiration in the upper Huaihe River Basin, which 
causes a decrease in runoff. An increase in SM means a decrease 
in surface runoff. The increase in KI and decrease in KG in 
Dapoling basin reveal that the present land use pattern causes 
high peak flows and quicker recession. Because of limited data 
availability, only the daily model was applied for parameter 
calibration and evaporation, and runoff generation parameters 
were compared, while water source separation and concentration 
parameters were not. 

The linearized parameter calibration method is a new 
calibration method. Future studies will involve tested the method 
in more basins and using more hydrological model parameter 
calibrations.
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APPENDIX 1

The validity of parameter search is justified as follow. From the 
text we can get the sum of squared errors Fj corresponding to the 
above step parameter vector θj. 

)()( j
T

jj ffffF −−= 	  (A-1)

TABLE 5 
Comparison of parameters calibrated for different periods

Parameter Initial value 1966–1975 1976–1985 1986–1995 1996–2005

KC 0.741 0.658 0.675 0.710 0.922
WUM 20 20 20 20 20
WLM 80 80 80 80 80
C 0.16 0.16 0.16 0.16 0.16
WM 150 150 150 150 150
B 0.3 0.3 0.3 0.3 0.3
SM 16.813 5.431 10.809 15.849 19.94
EX 1.5 1.5 1.5 1.5 1.5
KG 0.398 0.334 0.294 0.294 0.252
KI 0.363 0.366 0.406 0.406 0.448
CS 0.45 0.45 0.45 0.45 0.45
CI 0.88 0.88 0.88 0.88 0.88
CG 0.995 0.995 0.995 0.995 0.995
KE 1 1 1 1 1
XE 0.38 0.38 0.38 0.38 0.38

TABLE 6 
Simulation results from different periods

Period Robs (mm) Rsim (mm) ER (%) DCave
*

1966–1975 4 877 4 882 −0.1 0.46
1976–1985 3 847 3 845 0.05 0.51
1986–1995 2 979 2 975 0.13 0.395
1996–2005 4 037 4 039 −0.05 0.470
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The sum of squared errors Fj+1 can be expressed as:

)()( 111 +++ −−= j
T

jj ffffF 	 (A-2)

Substitute Eq. 9 into Eq. A-2:
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Substitute Eq. 12 into Eq. A-5:

j

j
TTT

jj

j
TT

j
TT

j
TTT

j

j
TT

j
TT

jj

F
ffSSSSffF

ffSffSSS

ffSSSSff

ffSffSSSFF

<

−−−=

−−+

−−−

−−−=

−

−

−

−
+

)()()(

)())()((

)()()(

)())()((

1

1

1

1
1

	 (A-6)

It can be observed that the new parameter vector θj+1 of any step 
determined by Eq. 12 satisfying the relation: 

jj FF <+1 	 (A-7)

According to Eq. A-7, every searching step will get less sum-
squared. As the iterative process continues, the sum-squared 
error approaches the minimum value and the optimal parameter 
will be obtained. So the searching direction determined by Eq. 
12 is correct.
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