
http://dx.doi.org/10.4314/wsa.v44i2.03
Available on website http://www.wrc.org.za
ISSN 1816-7950 (Online) = Water SA Vol. 44 No. 2 April 2018
Published under a Creative Commons Attribution Licence 162

Applications of the PyTOPKAPI model to ungauged catchments

Zeinu Ahmed Rabba*, BS Fatoyinbo and Derek D Stretch
Centre for Research in Environmental, Coastal & Hydrological Engineering, School of Engineering, University of KwaZulu-Natal,  

Durban 4041, South Africa

ABSTRACT
Many catchments in developing countries are poorly gauged/totally ungauged which hinders water resource management and 
flood prediction in these countries. This study explored the application of the PyTOPKAPI model to South African (Mhlanga) 
and Ethiopian (Gilgel Ghibe) case study catchments to test its suitability for simulating stream flows from ungauged 
catchments. The aim is to extend the model application to poorly gauged/totally ungauged catchments in developing 
countries. The model uses digital elevation data and other spatial data sources to set up the model parameters and the forcing 
files. To generate reliable stream flows, models generally need to be calibrated, which typically relies on the availability of 
reliable stream flow data. We show how application of simple lumped models for average runoff ratios, such as that proposed 
by Schreiber in 1904, can be used as an alternative to detailed calibration with gauged flows. This approach seems to be new; 
and we show how the proposed method, together with the PyTOPKAPI model, can be used to predict runoff responses in 
ungauged catchments for water resource applications and flood forecasting in developing countries.
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INTRODUCTION

Flooding is one of the natural disasters that can lead to loss 
of life and property. Accurate streamflow modelling and 
forecasting is therefore a key issue in hydrology for flood 
management (Kamruzzaman et al., 2014; Saeidifarzad et al., 
2014; Zhao et al., 2014; Wu and Lin, 2015; Liu et al., 2017) and 
is also vital for water resource applications (Blöschl, 2013; Ries 
III, 2007; Sanborn and Bledsoe, 2006). However, estimation 
of streamflow time series in ungauged catchments remains 
a challenge. Early attempts at estimating streamflow from 
ungauged catchments employed calibrated model parameters 
from nearby gauged catchments where streamflow data were 
available. However, the modelled streamflow from ungauged 
catchments may have errors when basin characteristics such 
as geography, land use and soil type are significantly different 
from those of gauged catchments (Jeon et al., 2014; Vis et 
al., 2015). This issue of streamflow predictions in ungauged 
catchments remains an area of active research. The present 
study demonstrates the implementation of the PyTOPKAPI 
model (Sinclair and Pegram, 2012; Vischel et al., 2008) in 
South African (Mhlanga) and Ethiopian (Gilgel Ghibe) 
ungauged catchments, for streamflow simulation. However, 
since the two catchments are poorly gauged in a sense that 
there were rainfall data but little/no stream flow data, it 
is difficult to calibrate the model for reliable streamflow 
simulation from the catchments. In this study, we investigate 
the use of the runoff-ratio formula proposed by Schreiber in 
1904 (Arora, 2002; Fraedrich, 2010; Fraedrich and Sielmann, 
2011; Fraedrich et al., 2015) to calibrate the PyTOPKAPI 
model, as an alternative to detailed model calibration 
procedures, which can be used when there is plentiful 
data. This approach seems to be a new method proposed 
in this work as an alternative model calibration procedure 

for streamflow simulation from ungauged catchments. In 
Schreiber’s work, the runoff-ratio is the (time-averaged) ratio 
of volume of runoff to volume of rainfall in a catchment. 
It illustrates the average excess rainfall for a catchment 
(Fraedrich et al., 2015). Consequently, the runoff ratios were 
computed from the simulated stream flows and the rainfall 
data of the study catchments. The model was then calibrated 
by comparing the simulated runoff-ratio with that predicted 
by the Schreiber’s formula. We found that the calibrated 
PyTOPKAPI model generated a realistic daily streamflow time 
series over the catchments.

The first section of this paper introduces the methods 
used while the second outlines the results, with discussion 
focusing on the output of model calibration and validation. 
The last section presents concluding remarks and 
recommendations.

MATERIALS AND METHODS 

Description of the case study catchments

In this study, the PyTOPKAPI model was implemented 
on South African (Mhlanga) and Ethiopian (Gilgel 
Ghibe) ungauged catchments. These two catchments are 
geographically located in different hydrological regimes; the 
Gilgel Ghibe is found at a high altitude in a wet tropical zone 
while the Mhlanga catchment drains an area that is lower in 
elevation in a temperate zone. The two catchments are briefly 
described below.

The Gilgel Ghibe catchment (Fig. 1) feeds a tributary 
of the Ghibe River (EthioVisit.com, 2016) with a drainage 
area of 2 943 km2, and is located in the southwest of 
Ethiopia extending between longitudes 36°31′04.91′′ E and 
37°13′31.07′′ E, and latitudes 7°20′01.58′′ N and 7°59′15.32′′ N. 
It is characterized by high-relief hills and mountains with 
elevations between 1 692 and 3 304 m amsl. The basin’s 
land use is composed of fallow lands (29.6%), forestlands 
(13.5%), woodlands (28.8%), grasslands (15.7%), and bush 
and shrublands (13.1%), and urban and water (0.3%) (Negash, 
2012). The climate of the catchment is sub-tropical, humid, 
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and warm to hot. The average monthly temperature is 19°C, 
with minimum of 2.5°C, and maximum of 32.6°C. Rainfall 
follows a mono-modal pattern, occurring mainly between 
June and September. These summer rains account for 50–80% 
of annual rainfall totals over the catchment (Demissie, 2013). 
The mean annual rainfall of the catchment is 1 456 mm, 
and the mean annual discharge is 52.7 m³/s (565 mm, 
calculated from observed streamflow data). The mean annual 
evapotranspiration of the catchment is about 1 306 mm 
(obtained from the computed potential evapotranspiration). 
The dominant soil types in the basin are clay and clay-loam, 
with a very small portion of sandy clay-loam and loam 
(HWSD) (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). 

Mhlanga catchment (Fig. 1) is a typical small ungauged 
catchment in South Africa having a catchment area of about 
80 km2, and is found in the U30B quaternary catchment 
area downstream of Mdloti Hazelmere Dam (Midgley et 
al., 1994; Zietsman, 2003; Middleton and Bailey, 2005) and 
provides runoff directly into the Indian Ocean, to the north of 
Durban, KwaZulu-Natal (Zietsman, 2003). Geographically, it 
is located between 29°39′00′′ and 29°42′09′′ S, and 30°57′00′′ 
and 31°06′00′′ E, on the east coast of South Africa, with an 
average slope of 0.6%. It has a mean annual precipitation of 
about 1 000 mm, mean annual runoff of 0.4 m³/s (157 mm) 
(Zietsman, 2003; Stretch and Zietsman, 2004) and a mean 
annual evapotranspiration of 1 792 mm (obtained from the 
computed potential evapotranspiration).

Description of the PyTOPKAPI model 

The PyTOPKAPI model is an improved version of the earlier 
TOPKAPI model (Sinclair and Pegram, 2012; Sinclair and 
Pegram, 2013a). TOPKAPI is the acronym of: TOPographic 
Kinematic APproximation and Integration, and is a 
physically-based, fully-distributed rainfall-runoff model 

applicable at different spatial scales, ranging from the hill 
slope to the catchment scale, while keeping the physical 
meaning of the model parameters (Liu and Todini, 2002; 
Liu et al., 2008). The model is based on the lumping of a 
kinematic wave assumption (Vischel et al., 2008) for flows 
in the soil, over the land and in the channel (Ciarapica and 
Todini, 2002), and results in converting the rainfall-runoff 
and runoff routing processes into three ‘structurally-similar’ 
zero-dimension non-linear reservoir differential equations 
describing the different hydrological and hydraulic processes 
(Liu and Todini, 2002). 

A correct integration of the differential equations provides 
a relatively scale-independent physically-based model which 
preserves the physical meaning of the model parameters. 
The geometry of the catchment is described by the pixels of a 
digital elevation model (DEM), over which the equations are 
integrated to feed into a cascade of non-linear reservoirs. It is 
assumed that the non-linear cascade aggregates into a unique 
non-linear reservoir at the basin level whose parameter values 
can be estimated directly from the small-scale values without 
losing the physical meaning of them (Liu and Todini, 2002; 
Vischel et al., 2008). Each grid cell of the DEM is assigned 
a value for each of the physical characteristics represented 
in the model. The flow directions and slopes are evaluated 
starting from the DEM, according to a neighbourhood 
relationship based on the principle of minimum energy; 
namely, the maximum elevation difference that takes into 
account the links between the active cell and the four 
surrounding cells connected along the edges. The active cell is 
assumed to be connected with a single downstream cell, while 
it can receive from up to three upstream contributing cells 
(Ciarapica and Todini, 2002; Liu and Todini, 2002). 

The TOPKAPI model consists of 5 main modules; namely, 
soil, overland, channel, evapotranspiration, and snow 
modules (Liu and Todini, 2002; Liu et al., 2008). The first 

Figure 1  
Location map of the study areas
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3 modules take the form of non-linear reservoir equations 
controlling the horizontal flows. This mechanism plays a 
fundamental role in the model, both as a direct contribution 
to the flow into the channel network and as a factor regulating 
the soil moisture balance, particularly with regard to the 
dynamics of the saturated areas. Overland flow is generated 
by the excess rainfall on the different saturated cells while 
the total runoff (surface and sub-surface) is then drained by 
the drainage network. In the current PyTOPKAPI modelling, 
evapo-transpiration was introduced directly as an input to 
the model, while the snow module component was totally 
ignored since there are no snowfalls in the study catchments. 
In the flow simulation, on the basis of the soil condition 
and actual evapotranspiration, the precipitation onto the 
catchment is divided into direct runoff and infiltration, which 
reflects the nonlinear relationship between the soil water 
storage and the saturated contributing area in the basin. The 
infiltration and direct runoff are input into the soil reservoir 
and surface reservoir, respectively. Outflows from the two 
reservoirs as interflow and overland flow are then drained 
into the channel reservoir to form the channel flow (Liu and 
Todini, 2002).

The improved PyTOPKAPI model is coded in Python 
programming language and accessed directly through an 
interactive Python environment. It is open-source with BSD 
license, and runs on most popular operating systems (Sinclair 
and Pegram, 2012). The model was previously tested on the 
Liebenbergsvlei gauged catchment in South Africa to simulate 
river discharge at 6-h time-steps and showed good performance 
(Vischel et al., 2008).

PyTOPKAPI model input data

Basically, the PyTOPKAPI model input comprises gridded data 
including: (i) a digital elevation model (DEM); (ii) a soil type; 
(iii) a land use; and (iv) hydro-meteorological data, such as 
rainfall and temperature data. The observed streamflow data 
were also utilized for testing the suitability of the calibration 
approach. These data are briefly described hereunder.

Digital elevation model (DEM)

The SRTM DEM (Jarvis et al., 2008) was used for the current 
study. The resolutions of the DEM were set to 1 km for Gilgel 
Ghibe and 500 m for Mhlanga (Figs 2 and 3). These resolutions 
have been respectively adopted for all the terrain maps. 

Soil type data

These data were acquired from the Harmonized World Soil 
Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). The HWSD 
is composed of raster image files and a linked attribute data file. 
The grids contain the dominant soil texture class for each of the 
13 standard soil layers using the USDA soil texture class index 
by referring to the HWSD attribute table (Fischer et al., 2008). 
Table 1 shows the identified USDA soil texture class index and 
USDA soil texture class name and code for the Gilgel Ghibe 
and Mhlanga catchments. Figures 4 and 5 show the soil maps 
for the two catchments, respectively.

Land use

The land use maps were obtained from the United States 
Geological Survey (USGS) Global Land Cover Characterization 

Figure 2
DEM grid of Gilgel Ghibe River

Figure 3
DEM grid of Mhlanga River

Figure 4  
Soil type grid of Gilgel Ghibe River

Figure 5  
Soil type grid of Mhlanga River
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(GLCC) database and are accessible through the WaterBase web 
page (UNU-INWEH, 2016). These maps are available in the 
form of tiles for each continent/region in two resolutions: the 
original at approximately 400 m (at the equator), and resampled 
versions at 800 m. For this study, the ‘400 m resolution’ was used 
as it is finer. The PyTOPKAPI model requires the values of the 
Manning’s coefficient for every grid cell for each land use class. 
These parameters were obtained from the land use gridded 
data from the USGS Land Use/Land Cover System Legend-
Modified Level 2 (GLCC, 2008) and Manning’s coefficient values 
used for various land cover classes in GeoSFM (Asante et al., 
2008). Figures 6 and 7 show the land use grids of the two river 
catchments. Table 2 shows the identified land use classes and 
Manning’s coefficient (no) values for the two catchments.

Hydro-meteorological data

The available meteorological data for Gilgel Ghibe catchment 
comprised daily rainfall and temperature records from Jimma, 
Asendabo and Yebu weather stations (Fig. 1) for the period 
from 01/01/1986 to 31/12/2010 obtained from the Ethiopian 
National Meteorological Agency (ENMA). For the Mhlanga 
catchment, daily rainfall between 01/01/1980 and 31/10/2009 
was obtained from the South African Weather Service (SAWS). 
Table 3(a) shows the average precipitation data for the two 
catchments. We also obtained daily streamflow data (1986–
2010) at the Gilgel Ghibe outlet (Fig. 1) from the Ministry of 
Water, Irrigation and Electricity in Ethiopia. The Mhlanga 
catchment does not have any directly-observed streamflow 
data, so 30 years (1980–2009) of streamflow data for the 
neighbouring Mdloti River at the Hazelmere Dam gauging 
station was utilized.  

TABle 1  
Identified USDA soil texture class index, code and name with the corresponding soil depth

Catchment Particulars Identified soil ID, soil depth and USDA soil texture class code and name 
(According to HWSD table)

Gilgel Ghibe Soil ID 16664 16768 16776 16779 16832 16898
Soil depth (L), m 0.3 1 1 1 1 1
USDA soil 

texture code 9 3 3 10 3 5

USDA soil 
texture class Loam Clay Clay Sandy clay 

loam Clay Clay loam

Mhlanga Soil ID 28718 28733 28824 28844 - -
Soil depth (L), m 1 0.1 0.1 1 - -
USDA soil 

texture Code 10 5 5 8 - -

USDA soil 
texture class 

Sandy clay 
loam Clay loam Clay loam Sandy clay - -

Figure 6
Land use grid of Mhlanga River

Figure 7  
Land use grid of Gilgel Ghibe River

TABle 2  
Identified land use classes and Manning’s coefficient (no) values for the two catchments

land use ID value (GlCC, 2008) 2 5 6 7 10 11 13 15 19

Code 211 280 280 280 311 332 421 430 770
Gilgel Ghibe catchment 0.03 - 0.04 0.05 0.06 - 0.12 0.10 -
Mhlanga catchment 0.03 0.035 - - 0.06 0.10 0.12 - 0.03
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Potential evapotranspiration (ETo)

The ETo data used were obtained by taking the average value 
of ETo computed by the methods of Blaney-Criddle (Blaney 
and Criddle, 1962) and Thornthwaite (Thornthwaite, 1948; 
Thornthwaite and Mather, 1955) for Gilgel Ghibe catchment; 
and using the method of Blaney-Criddle (Blaney and Criddle, 
1962) for Mhlanga catchment. Table 3(b) shows the computed 
ETo data for the two catchments.

PyTOPKAPI model set-up

The PyTOPKAPI rainfall-runoff modelling starts with pre-
processing of the DEM and preparation of model input files, 
and then applies them in the model to simulate the streamflow 
data along the drainage system. The model was set up using the 
essential data described above for simulating stream flows. The 
model setup steps are briefly summarized below.
1. The DEM of the study areas were loaded to the GIS and were 

treated by pre-processors that help eliminate the false outlets 
and the sinks so that the flow direction and the basin closure 
cell are uniquely identified.

2. The stream network was generated by defining a threshold 
area that initiates a stream. In this case, 25 km2 was used 
as ‘Threshold area’ to define the stream network as per the 
recommendation of Todini (Sinclair and Pegram, 2013b). 

3. The location of the outlet was carefully selected and then the 
entire watershed of the respective catchment was delineated. 

4. Similarly, the land use and the soil maps were loaded to GIS 
and then extracted by the defined watershed as a mask. The 
attribute table for each map was edited with the values of the 
literature parameters (Fischer et al., 2008). 

5. Then, the different thematic maps (the GIS files to generate 
parameter files) were created. 

6. Thereafter, cell parameters were generated and modified to 
eliminate zero slopes. 

7. Next, the rainfall and the ETo data were prepared as the 
forcing files in HDF5 format.

8. Finally, the model simulated the streamflow time series for 
the simulation periods.

PyTOPKAPI model calibration 

In principle, a physically-based model such as the 
PyTOPKAPI model should require no calibration since 
its parameters are estimated from catchment data such 
as morphology and hydraulic catchment properties, soil, 
vegetation, literature and experience (Coccia et al., 2009). 
Even though the PyTOPKAPI model is a physically-based 
model, it is of course subject to several uncertainties 
associated with the input data, and with approximations 
introduced by the scale of the parameter representations. For 
these reasons, Liu and Todini (2002) suggest that calibration 
of the parameters is still necessary for fine-tuning the model. 
Previous studies using the PyTOPKAPI model indicated 
that satisfactory model performance can be achieved by 
simple trial-and-error adjustment of grouped key parameters 
(Pegram et al., 2010) to match observed streamflow. This is 
not an option in the case of ungauged catchments. Thus, the 
use of the runoff-ratio formula proposed by Schreiber in 1904 
(Fraedrich, 2010) was used as an alternative to detailed model 
calibration procedure. The runoff-ratio shows the percentage 
of precipitation that appears as runoff by taking other basin 
characteristics (e.g., soil, slope, vegetation) into account. 
It is a measure of the overall water balance of a basin and 
indicates how well the model is simulating the water balance 
of the basin (in an average sense) based on the primary input 
information (Fraedrich et al., 2015). 

Schreiber analysed data for the annual mean discharge 
R versus the annual precipitation P of continental European 
river basins and fitted them to a polynomial curve a century 
ago. Looking at that curve, he developed the formula: R = 
P (e−ETo/P) where ETo is potential evapotranspiration; and 
the expression (ETo/P) is defined as an aridity index ø 
(Fraedrich, 2010; Fraedrich and Sielmann, 2011; Fraedrich 
et al., 2015). The functional form of Schreiber’s formula is 
based on the aridity index ø, and is a reasonable first-order 
approximation of the actual evapotranspiration (ETa) (Arora, 
2002; González-Zeas et al., 2012). Thus, it may be called an 
integrated runoff-ratio calculated using the functional form 
of the aridity index ø. The formula can also be extended to 

TABle 3(a) 
Average precipitation data for the two catchments

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Gilgel 
Ghibe 
catchment

mm/day 1.46 1.40 3.91 4.92 6.10 5.87 6.37 6.04 5.27 3.62 1.61 1.10
mm/
month

45.32 39.33 121.29 147.59 188.97 175.97 197.50 187.25 158.06 112.26 48.22 34.23

Mhlanga 
catchment

mm/day 4.43 4.09 2.69 2.52 1.10 0.87 1.44 0.96 2.00 3.45 3.66 4.84
mm/
month 137.30 114.64 83.47 75.64 34.14 26.13 44.59 29.78 60.01 106.86 109.95 150.11

TABle 3(b) 
Potential evapo-transpiration estimates for the two catchments

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Gilgel Ghibe 
catchment

mm/day 4.03 3.78 3.89 3.89 3.77 3.53 3.32 3.26 3.36 3.39 3.38 3.37
mm/month 125.05 105.92 120.68 116.64 116.72 105.96 102.86 100.91 100.92 104.94 101.31 104.53

Mlanga 
catchment

mm/day 6.06 5.85 5.30 4.68 4.11 3.73 3.74 4.16 4.60 5.13 5.63 6.00
mm/month 187.98 163.88 164.39 140.25 127.47 111.96 115.94 128.81 137.94 158.94 168.99 185.94
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determine the ratio between the actual evapotranspiration 
(ETa) and the precipitation (P), through the water balance as 
shown below.

Water balance refers to the quantitative description of the 
hydrologic cycle. Empirical data from catchments all over the 
world indicate that the long-term water balance is primarily 
controlled by water supply (i.e., precipitation) and energy 
demand (i.e., potential evapotranspiration) (Zhang et al., 2015). 
Water is supplied by precipitation, and is balanced by runoff 
and evapotranspiration (Dooge, 1992; Fraedrich et al., 2015). 
Thus, the basic water balance can be expressed as:

P = R + ETa

from which, the evapotranspiration ratio is expressed as 
(Arora, 2002; Fraedrich et al., 2015)

where ø = ETo/P thereby yielding the value of the mean annual 
runoff (R) as a function of the aridity index and precipitation (P) 
(González-Zeas et al., 2012) that, lastly, gives the runoff-ratio as:

R/P = e–ø

Accordingly, we used the above integrated Schreiber’s 
runoff-ratio formula for computation of the runoff-ratios to 
calibrate the model. In this case, the monthly average ETo 
values are 109 mm and 149 mm; and the precipitation (P) 
values are 120 mm and 82 mm, for Gilgel Ghibe and Mhlanga 
catchments, respectively; from which the runoff-ratios were 
computed (Table 4).

If observed streamflow data are available, the runoff-ratios 
can also be obtained from the plot of cumulative volume 
of precipitation versus the cumulative volume of observed 
discharge data. Thus, the runoff-ratio based on 10 years 
(2001–2010) of data for Gilgel Ghibe catchment was 39% 
(Fig. 8). The mean and the standard deviation of the data for 
Gilgel Ghibe are 1.57 mm and 1.248 mm, respectively. For 
Mhlanga catchment we used 15 years (1980–1994) of daily 
streamflow data from the neighbouring Mdloti station, the 
mean and standard deviation of which were 0.41 mm and 
1.94 mm, respectively, for estimating the runoff-ratio in the 
region, which was 16%. The generally good agreement between 
the observed values and those predicted by the Schreiber 

runoff-ratio formula indicate that the Schreiber’s formula can 
be used in these regions to predict average runoff-ratios for use 
in calibrating the PyTOPKAPI model.

Therefore, the model could effectively be calibrated by 
comparing the simulated runoff-ratio with the Schreiber’s 
runoff-ratio. According to a sensitivity analysis conducted 
by researchers (Liu et al., 2005), the most sensitive model 
parameters controlling the runoff production are the soil depth 
L and the soil conductivity K, whereas the Manning roughness 
of channel nc and overland no are the primary routing 
parameters. While calibrating the model, we also observed that 
the most sensitive model parameter was the saturated hydraulic 
conductivity K, followed by the soil depth L. These parameters 
are discussed below.

The first and the most sensitive parameter is K. It is the 
most important soil hydraulic parameter for flow in soil. 
Direct measurement of this parameter is ‘very difficult, 
laborious, and costly’ (Rawls et al., 1982 p. 1316) under field 
or laboratory conditions, and even ‘sometimes impractical 
for many hydrologic analyses’ (Saxton and Rawls, 2006 
p. 1569). Due to this, soil scientists and engineers have 
intensively investigated its estimation over the past several 
decades. Consequently, numerous models/pedotransfer 
functions have been developed to estimate the representative 
K values with readily obtainable soil data (Saxton and 
Rawls, 2006), such as soil texture, soil organic matter, and 
soil bulk density (Rawls et al., 1982; Saxton et al., 1986; 
Jabro, 1992; Smettem et al., 1999; Saxton and Rawls, 2006). 
However, the accuracy and reliability of each of these are 
very variable (Mualem, 1976; Rawls et al., 1982; Rawls et 
al., 1983; Campbell, 1985; Saxton et al., 1986; Stolte et al., 
1994; Smettem et al., 1999; Minasny and McBratney, 2000; 
Sobieraj et al., 2001; Saxton and Rawls, 2006; Duan et al., 
2012). Large errors in some cases and good accuracy in other 
cases was observed. That is to say, the accuracy of using 
the indirect methods for K estimation was relatively low. 
Conversely, direct estimation of K is a difficult task involving 

TABle 4  
Calculated run-off ratios by the Schreiber’s formula

Catchment ETo 
(mm/month)

P 
(mm/month)

Aridity index,
 ø = ETo/P

Runoff-ratio, 
R/P = e−ø 

Gilgel Ghibe 109 120 0.908 0.403
Mhlanga 149 82 1.817 0.163

Figure 8 
Plot of cumulative volumes of rainfall and observed runoff for Gilgel Ghibe catchment (2001–2010)
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testing, measurement and judgment. Hence, it advisable 
to adequately assess a representative K value, balancing 
between cost and accuracy. With these inferences, we used 
the single K value provided in Table 2 of Rawls et al. (1982) 
for the current study as it provides an adequate estimate for 
applications where more detailed data are not available and 
direct K measurements are also not feasible.

The second sensitive model parameter is the soil depth. 
The soil depth that the PyTOPKAPI model uses is the sum 
of the depths for the A and B horizons (Pegram et al., 2010). 
It is an important parameter but is the most challenging 
to estimate. In this study, we used the uniform ‘Reference 
soil depth’ presented in the HWSD (FAO/IIASA/ISRIC/
ISS-CAS/JRC, 2012). In this case, the ‘Reference soil depth’ 
of all soil units is uniformly set at 100 cm, except for 
Rendzinas and Rankers of FAO-74 and Leptosols of FAO-90, 
in which it is set at 30 cm, and for Lithosols of FAO-74 and 
Lithic Leptosols of FAO-90, where the same is set at 10 cm. 
The soil characteristics in the HWSD represent data from 
real soil profiles for surface (0 to 30 cm) and deeper (30 to 
100 cm) soil horizons. We expected that the ‘reference soil 
depth’ contained in the HWSD can provide an appropriate 
estimate of the soil depth for the current PyTOPKAPI 
model applications since more detailed data for soil depth 
are not available in the study areas and it is eventually 
adjustable by calibration. 

These two sensitive parameters were then optimized by 
assuming the soil depth from within the range of its realistic 
values that would provide the target runoff-ratio and finding 
the corresponding value of the hydraulic conductivity since the 
accuracy of the soil depth is relatively low. 

To check the streamflow variability, the coefficient of 
variation (CV) of the flows was employed. The CV provides 
temporal variability of runoff estimation in the catchments 
(Chen et al., 2014; Berhanu et al., 2015). In this case, the 
runoff was represented by two related but distinct dependent 
variables: the runoff-ratio and the CV of the stream flows. Each 
dependent variable was calculated from the simulated stream 
flows. The graphical relationship between CVs and the runoff-
ratios of the study catchments was developed and used for 
finding anticipated CVs of the catchments.

SUMMARy Of THE METHOD

In PyTOPKAPI model applications, the model parameters 
would be linked with the catchment characteristics. This is 
the greatest advantage of the model (Liu and Todini, 2002; 
Pegram et al., 2010). These parameters were generated from 
DEM, soil and land use data of the study catchments. The 
main base map used was the DEM of the respective catchment 
from which the grid definition, the setting of the spatial 
resolution of the model and delineation of the stream network 
were carried out. 

Different datasets and relevant tables from the literature 
were used to determine the appropriate values of the initial 
model parameters according to the soil type and the land use 
of the study areas. The initial values of the soil depth L, the 
residual soil moisture θr, the saturated soil moisture θs, the 
saturated hydraulic conductivity K, the bubbling pressure 
Ψb, and the pore size distribution index λ for each soil class 
were taken from HWSD attribute table and report paper by 
Rawls et al. (1982). The initial values for the parameter no were 
selected referring to the Table of USGS Land Use/ Land Cover 
System Legend; and Table of Manning’s roughness values in 

the USGS Land Use/Land Cover System Legend (Modified 
Level 2) and in the Technical Manual for the Geospatial 
Stream Flow Model (GeoSFM), Open-File Report 2007–1441 
(Asante et al., 2008). The Strahler order was used to define 
the values for the Manning’s roughness coefficients nc of 
the channel (Liu and Todini, 2002; Pegram et al., 2010). The 
value of the pore-size distribution parameter (αs); which is 
dependent on the soil property, was set to a constant value of 
2.5 for all the cells. Varying the value of αs in its realistic range 
values between 2 and 4 was observed to have little influence 
on the results of the simulations (Liu and Todini, 2002; 
Pegram et al., 2010). A constant value of 5/3 was also used 
for both of the power coefficients αo and αc of the Manning’s 
equation for overland and channel flows, respectively. As a 
first approximation, the crop factor Kc was assumed to be 
spatially uniform over the catchment and was set to 1. This is 
so because the evapotranspiration forcing files applied in the 
simulations is assumed to be the actual evapotranspiration, 
ETa (Pegram et al., 2010).

Consequently, maps of the soil depths (L), the saturated 
soil moisture content (θs), the residual soil moisture content 
(θr), the saturated hydraulic conductivity (K), the bubbling 
pressure (ψb), the pore size distribution index (λ) and 
Manning’s roughness coefficient for overland f low (no) were 
generated. The slopes of the ground tan β (for f lows in the 
soil and over the land) were obtained from the DEM. The 
slopes used to transfer the f lows in the channel drainage 
network, tanβc, were also computed from cell to cell in a 
downstream direction using differences in altitude. Table 
5 explains the summary of the initial model parameters 
and the sources where the parameter values are obtained. 
Generally, a total of about 17 parameters are to be used in 
the PyTOPKAPI model application, of which 13 (tan β, tan 
βc, L, K, θr, θs, no, nc, αs, kc, Ψb, λ and W) are cell specific 
and mainly refer to physical characteristics of the cells. The 
remaining 4 parameters (X, Athreshold, the minimum channel 
width Wmin, the maximum channel width Wmax) are constant, 
representing the geometric characteristics of the channel or 
grid cell (Pegram et al., 2010).

The parameter X was fixed at 1 km, and Wmin and Wmax were 
set at 5 m and 38 m, respectively, for Gilgel Ghibe catchment. 
Likewise, X was 0.5 km, and Wmin and Wmax were 5 m and 25 m, 
respectively, for Mlanga catchment. Athreshold was set to 25 km2 
for both the catchments.

The width (Wi) of each channel cell was determined by the 
relation (Liu and Todini, 2002; Pegram et al., 2010):

 
𝑊𝑊𝑖𝑖 = 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚  + [𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 −𝑊𝑊𝑚𝑚𝑖𝑖𝑚𝑚

√𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 − √𝐴𝐴𝑡𝑡ℎ
] (√𝐴𝐴𝑖𝑖 − √𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡) 

 

 

𝐸𝐸𝐸𝐸a
𝑃𝑃 = 1 − 𝑒𝑒−∅ 

 (1)

Where: Ath is the threshold area, Atot is the total area, and Ai 
is the area drained by the ith cell.

These values are the appropriate initial values to create 
the model parameters. Hence, the values of the cell-specific 
parameters for all the cells were generated from the extracted 
thematic maps. After that, the implementation of the model 
additionally requires fixing the simulation periods, setting the 
simulation time-step and preparing the forcing files (variables), 
matching with spatial scale and time-step of the simulation. 
In defining the simulation periods, two independent periods 
of some suitable length must be available where the data are 
continuous and of good quality for the model evaluation. 
Accordingly, based on the availability of the data, the 
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2001–2010 data were used for calibration and that between 1986 
and 2000 were used for validation for Gilgel Ghibe catchment. 
Similarly, the data from 1980–1994 were utilized for calibration 
and the 1995–2009 dataset was used for validation for Mhlanga 
catchment. The simulation time-step was chosen to be 24 
h, which is highly suitable to simulate the main discharge 
variations for the study areas.

The respective daily rainfall and evapotranspiration data 
were used to create the ‘rain-fields’ and the ‘ET’ forcing files 
for the two catchments, respectively. Using these input files, we 
simulated the streamflow time series for both catchments.

RESULTS AND DISCUSSION

Overall results

The two sensitive model parameters (L and K) were 
optimized as explained above. Table 7 shows the final 
optimum calibrated sensitive model parameters. Here, 
we identified that the parameter adjustment factors were 
essentially identical for both catchments, which suggests 
the generality of our results in that it would work for other 
catchments as well with the same parameter adjustment 

TABle 5 
Summary of the initial values of the model parameters estimated from DeM, soil and land use maps and literature

Parameter

Initial values

References/sources
Gilgel Ghibe catchment Mhlanga 

catchment

Cell specific

tan β, tangent of the ground 
slope angle 5.00 x 10–4–2.84 x 10–1 0.0018–0.1717 Jarvis et al., 2008

tan βc, tangent of the channel 
slope angle 7.70 x 10–5–7.00 x 10–2 0.00044–0.024 Jarvis et al., 2008

L, soil depth (m) 0.30–1.00 0.10–1.00 Soil type (Rawls et al., 1982; Fischer et al., 2008; FAO/
IIASA/ISRIC/ISS-CAS/JRC, 2012)

K, hydraulic conductivity
 (mm/s) 1.67 x 10–4–3.67 x 10–3 6.38 x 10–4-7.19 x 10–3 Soil type (Rawls et al., 1982; Fischer et al., 2008; FAO/

IIASA/ISRIC/ISS-CAS/JRC, 2012)

θr, residual soil moisture 
content (cm3/cm3) 0.027–0.09 0.041–0.075 Soil type (Rawls et al., 1982; Fischer et al., 2008, FAO/

IIASA/ISRIC/ISS-CAS/JRC, 2012)

θs, saturated soil moisture 
content (cm3/cm3) 0.385–0.434 0.330–0.412 Soil type (Rawls et al., 1982; Fischer et al., 2008; FAO/

IIASA/ISRIC/ISS-CAS/JRC, 2012)

no, Manning’s coefficient for 
overland flow (m-1/3s-1) 0.03–0.10 0.03–0.12 Land use (GLCC, 2008; Asante et al., 2008; 

UNU-INWEH, 2016)

nc, Manning’s coefficient for 
channel flow (m-1/3s-1) 0.035–0.045 0.010–0.05 Strahler order method  

(Liu and Todini, 2002)

αs, a dimensionless pore-size 
distribution parameter 2.5 2.5 As per Brooks and Corey (1964), Rawls et al. 

(1982); Pegram et al. (2010)

kc, the crop coefficient 1 1 Land use (GLCC, 2008; Asante et al., 2008; 
UNU-INWEH, 2016)

Ψb, bubbling pressure(mm) 111.5–373.0 146.6–280.8 Soil type (Rawls et al., 1982; Fischer et al., 2008; FAO/
IIASA/ISRIC/ISS-CAS/JRC, 2012)

λ, pore-size distribution index 0.131–0.220 0.194–0.320 Soil type (Rawls et al., 1982; Fischer et al., 2008; FAO/
IIASA/ISRIC/ISS-CAS/JRC, 2012)

W, channel width (m) See Eq. 1 See Eq. 1 Liu and Todini, 2002

Constant  

X, grid cell dimension (m) 1 000 500 Jarvis et al., 2008

Athreshold (m
2) 25 000 000 25 000 000 As per Todini (1996); 

Pegram et al. (2010)

Wmin (m) 5 5 Collected by surveying work for Gilgel Ghibe
Estimated from Google map for MhlangaWmax (m) 38 25

Power coefficients of 
Manning’s roughness, αo 
and αc

1.667 1.667 As per Brooks and Corey (1964); Rawls et al. 
(1982); Pegram et al. (2010)

Time step, Δt (s) 86 400 86 400 –
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factors. This further supports the use of PyTOPKAPI model 
for ungauged catchments. Figure 9 indicates the plot of the 
CVs of the stream f lows and the runoff-ratios for the two 
study catchments. We observed that the CV seems related to 
the runoff-ratio. A decreasing trend of CVs with increasing 
runoff-ratios is evident. As shown above, the Schreiber’s 
runoff-ratios were 40% and 16% for the Gilgel Ghibe and 
Mhlanga catchments, respectively. Based on the above 
information and the plot in Fig. 9, the anticipated CV values 

were 0.89 and 5.0 for Gilgel Ghibe and Mhlanga catchments, 
respectively. The corresponding values of the optimum 
multiplying factors for the two sensitive parameters were 
then obtained as indicated (bolded rows) in Table 6.

Evaluation of the calibration 

As a confirmation of the relevance of the calibration, the 
simulated stream flows of the catchments for the years of 

TABle 6 
Parameters of the simulated stream flows for calibrating the model (Bolded rows are the combination at 

which satisfactory results were obtained)

Multiplying factor (f )
Runoff- ratio Qmean (m

3/s) Standard deviation, 
SD (m3/s)

Coefficient of 
Variation, CVSoil depth (L) Hyd. conductivity (K)

Gilgel Ghibe catchment (Schreiber’s runoff-ratio is 40%)
0.50 0.50 0.407 61.40 51.43 0.84
0.63 0.93 0.408 67.82 53.33 0.79
1.00 0.16 0.395 58.31 58.93 1.01
1.00 0.45 0.400 61.97 56.46 0.91
1.00 0.65 0.403 62.71 55.81 0.89
1.00 0.70 0.404 65.85 53.40 0.81
1.00 1.00 0.409 71.50 51.93 0.73
Mhlanga catchment (Schreiber’s runoff-ratio is 16%)
1.0 0.68 0.16 0.40 2.00 5.00
1.0 0.40 0.13 0.32 2.03 6.33
1.5 0.40 0.14 0.33 1.54 4.66
1.5 0.30 0.13 0.30 1.65 5.51
1.5 0.20 0.11 0.26 1.73 6.66
2.0 0.20 0.11 0.27 1.41 5.22

Figure 9
Plot of runoff-ratio vs CV for estimating the CVs of the catchments

TABle 7
The calibrated model parameters for Gilgel Ghibe and Mhlanga catchments

Catchment 
Calibrated multiplying factor (f) Runoff-

ratio
Q mean 
(m3/S)  SD (m3/s) CV

Soil depth (L) Hyd. conductivity (K)

Gilgel Ghibe 1.00 0.65 0.403 62.71 55.81 0.89
Mhlanga 1.00 0.68 0.160 0.40 2.00 5.00
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calibration are plotted in Figs 10a and b, respectively. The CV 
values obtained from the simulated results agreed with the 
estimated CV values for both of the catchments. It was also 
observed from scatter plots of cumulative rainfall volume 
and simulated runoff volume (Fig. 10 c and d) that there 
is, in general, good agreement between Schreiber’s runoff-
ratio and the simulated runoff-ratio for both catchments. To 

further realize the flow characteristics, comparison between 
observed and simulated stream flows was also done using 
flow-duration curves (Fig. 11). A flow-duration curve (FDC) 
is a cumulative frequency curve that shows the per cent of 
time during which the specified discharges are equalled or 
exceeded in a given period. It combines the flow characteristics 
of a stream throughout the range of discharges in one curve, 

Figure 10
Simulated streamflow hydrograph and plot of simulated runoff-ratios for the two catchments
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without regard to the sequence of occurrence. It also provides 
a convenient means for studying the flow characteristics of 
streams and can be used to compare streams in different 
geomorphic settings. Subsequently, the overall comparisons in 
this perspective revealed that the model reasonably captured 
the stream flows, including extreme discharges and their 
timings. This further proves the capability of PyTOPKAPI 
model, together with the Schreiber’s runoff-ratio, in modelling 
the stream flows from ungauged catchments.

Validation of the calibration 

In order to validate the PyTOPKAPI model calibration using 
more reliable data, the model was applied to a different period 
of data, using the respective calibrated parameter values of the 
catchments and the hydro-meteorological dataset of the period 
between: (i) 1986 and 2000 for Gilgel Ghibe; and (ii) 1995 and 
2009 for Mhlanga catchments. The simulated hydrographs are 
given in Fig. 12a and b, and scatter plots of cumulative volumes 
for the rainfall and simulated runoff are illustrated in Fig. 12 c 
and d. In this validation period, the simulated runoff-ratios and 
the CV values were observed to be in a good agreement with the 
target ones. In general, good simulation results were acquired 
for both catchments.

CONCLUSION AND RECOMMENDATIONS

Water resources are of great concern as they are closely 
linked to the well-being of humankind. Hydrological 
processes of a given region are often understood through 
studying river basins (Botai et al., 2015), for which 
sophisticated rainfall-runoff models are required. These 
rainfall-runoff models are powerful tools used in various 
water resource applications for simulating stream f lows. 
However, most rivers of developing countries are poorly 
gauged/totally ungauged thereby resulting in limited data 
for calibration of models such as the PyTOPKAPI model. 
In this study, we examined the possibility of using the 
physically-based PyTOPKAPI model together with the 
Schreiber’s runoff-ratio formula for applications to ungauged 
catchments. This method seems to be a new approach for 
model calibration in this context. The results suggest this 
can produce acceptable streamflow predictions. In summary, 
we concluded that the PyTOPKAPI model together with 
our simplified calibration approach, can be used to predict 
runoff responses from ungauged catchments for water 
resource applications and f lood predictions in developing 
countries. We finally recommend further refinement of the 
approach by implementing it in other catchments. 

Figure 11 
Flow-duration curves for observed and simulated flows
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