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Abstract

Local energy losses occur when there is a transition in open channel flow. Even though local losses in subcritical open 
channel flow due to changes in channel width have been studied, to date no studies have been reported for losses due to 
changes in bed elevations. Steps are commonly used in engineering applications to stabilise the flow in open channels. 
Hence, it is important to estimate local losses for design purposes. The aim of this study was to formulate the local energy 
losses at positive and negative steps in subcritical open channel flows. Flow rates and water depths before and after the step 
were measured for varying step heights of abrupt and 45o inclined steps. Empirical equations relating the local losses to the 
Froude number on the step and the relative step height are proposed for positive and negative steps. In addition, practical 
values of local loss coefficients are determined.
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Notation

a, a’ constants
b, b’ constants
C1, C1’, constants
E  specific energy
Fr  Froude number
g  gravitational acceleration
H  total head
hm  local energy loss due to step
K1p  local loss coefficient for positive steps defined in Eq. (4)
K1n  local loss coefficient for negative steps defined in Eq. (5)
K2p  local loss coefficient for positive steps defined in Eq. (6)
K2n  local loss coefficient for negative steps defined in Eq. (7)
U  average velocity
y  water depth
z  bed elevation
α  energy correction coefficient
f  inclination of the step
Dz  step height

Introduction

The energy losses that result from local features such as weirs, 
gates, cross-sectional changes or changes in alignment are 
called local or minor losses. Local losses may be computed as a 
fraction of the velocity head (Chow, 1959). This fraction is usu-
ally termed as the local loss coefficient and is usually obtained 
experimentally. Although the local loss coefficients are well 
determined for pipe flow, there are only a few cases where 
local loss coefficients have been studied in open channel flows. 
These are for the abrupt expansion or contraction in width of a 
rectangular channel.

Steps are often used in control structures like stilling 
basins; in order to design these properly, the amount of head 
losses should be known accurately. In the present study, local 
energy losses at a step in a subcritical open channel flow in a 
rectangular channel were studied experimentally. The effects 
of the step shape and step height as well as the flow properties 
were investigated. 

Formica (1955) conducted experiments on various designs 
for subcritical flow passing through sudden transitions. He 
presented typical flow profiles and energy lines for the design 
of expansions and contractions. Since velocity cannot be meas-
ured easily, because of the turbulent condition of flow, near the 
section where the transition takes place, he simply extended the 
energy lines. Formica also showed that, in general, the sudden 
contractions have higher head losses than the sudden expan-
sions; because in a sudden contraction the flow is first contracted 
and then expanded. He stated that a process of conversion from 
potential to kinetic energy is followed immediately by a process 
of re-conversion from kinetic to potential energy, and that, as 
a result, much less energy is recovered in a sudden contraction 
than in a sudden expansion. Formica concluded that this loss of 
energy could be greatly reduced by modifying the sharp-edged 
corners of the entrance of the reduced channel.

Skogerboe et al. (1971) studied the head loss occurring in 
open channel expansions. They presented a comparison of vari-
ous methods studied by previous researchers, and showed that 
the coefficients used in local loss calculations are not constants. 
Morris and Wiggert (1972) and Brater and King (1976) deter-
mined the constant empirical local loss coefficients for chan-
nel transitions in width. Binnie (1975) performed laboratory 
experiments on the flow of water over a downward step in an 
open channel, focussing on hydraulic jumps formed because of 
the abrupt drop.

Vittal and Chiranjevii (1983) suggested a rational method of 
design for open channel transitions. In their study, the existing 
design methods for the design of transitions between rectangu-
lar and trapezoidal channels for subcritical flows are carefully 
examined.  They suggest a new and rational design method for 
such transitions.
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Swamee and Basak (1991) presented an equation for 
the design of rectangular open channel transitions based on 
minimising the energy loss. Since such transitions are usu-
ally involved in channels for power generation and irrigation 
purposes, they emphasised that, by minimising the energy loss 
throughout the system, the system efficiency (as well as the life 
of the structure) may be increased. Based on optimal control 
theory, they presented a methodology for the optimal design of 
rectangular subcritical expansion transitions.

Swamee and Basak (1992) suggested a new method for the 
design of trapezoidal expansion transitions. Similar to their 
work on the design of rectangular transitions, they based the 
method on minimising the energy loss incurred in the system. 
They pointed out that in such transitions as the flow deceler-
ates a positive pressure gradient occurs causing separation and 
hence considerable head loss. They suggested that if the sys-
tem is designed for minimum head loss, considerable savings 
could be achieved. They evolved a methodology, based on the 
optimal control theory, for the design of an expansion transi-
tion between a rectangular flume and a trapezoidal channel for 
subcritical flow. Analysing a large number of designed optimal 
transitions, they obtained empirical equations for the bed width 
and side slope profiles.

Bhallamudi and Chaudry (1992) presented a study on the 
computation of flows in open channel transitions.  They solved 
2-dimensional, depth-averaged, unsteady flow equations in a 
transformed coordinate system using the MacCormack scheme 
to analyse flows in expansions and contractions. They found 
that the computed results were in satisfactory agreement with 
the experimental data for cases where the hydrostatic pressure 
distribution is valid. 

Swamee and Basak (1993) discussed a methodology, based 
on optimal control theory, for designing expansion transitions 
for gradually varied subcritical flow, called the comprehensive 
open channel expansion transition design. As in their previous 
works introduced in this paper, they pointed out that subcriti-
cal flow through a transition can result in significant head loss 
due to separation of flow and subsequent eddy formation. They 
also emphasised that the reduction of head loss is desirable, for 
it results in more power generation in the case of power chan-
nels and increased service area for irrigation canals, as well as 
being desirable from the viewpoint of increasing the life of the 
transition structure.

All of the studies mentioned above refer to the flow over 
transitions; when required they used approximate values for 
local loss coefficients or obtained them experimentally. Some 
of these studies report on numerical modelling of flow over 
transitions. There are also studies in the literature aimed at 
finding empirical formulas for the local loss coefficients in pipe 
flow; but no such studies could be found for flows in open chan-
nels. If empirical formulas for the calculation of the local loss 
coefficients in open channel flow can be obtained, subsequent 
analytical and numerical works on the subject would be more 
accurate. The present study aims to find such equations for 
positive and negative steps in subcritical open channel flows.

The present study addresses the flow over positive and 
negative steps in a subcritical open channel. Two types of step 
shape, an abrupt step and a 45° inclined step, were used in the 
experiments. For the positive steps, the abrupt step heights 
used were: 10 cm, 7 cm, 5 cm, and 3 cm; and for the inclined 
steps: 7 cm, 5 cm, and 3 cm. Similarly, for the negative steps, 
the abrupt step heights used were: 7 cm, 5 cm, and 3 cm; and 
for the inclined steps: 7 cm, 5 cm, and 3 cm. The experimen-
tal data has been analysed to obtain relations to represent the 

local losses as a function of the Froude number on the step 
and the relative step height defined for positive and negative 
steps.

Flow over a step

Sudden transitions will induce rapidly varied flow. Assuming 
that the frictional losses are negligible, the energy equation 
between Sections (1) and (2) (Figs.1 and 2) is:

              
(1)

where: 
Hi is the total head at i-th section,  i=1,2
hm is the local energy loss due to the step. 

Eq. (1) may be written in open form as:

              
(2)

where: 
z, y, and U represent the bed elevation, the water depth, and 
the average velocity, respectively
g is the acceleration due to gravity
a is the energy correction coefficient. 

Formica (1955) showed that the values of a are very close to 
unity for sudden contractions (between 1.00-1.04), but slightly 
higher than unity for sudden expansions (up to 1.10). In the 
present study, the value of energy correction coefficient, a, is 
determined experimentally as a = 1.02 for positive steps (Orsel, 
2002). Throughout the study, the energy correction coefficient 
is taken as unity. Solving Eq. (2) for the local loss, hm: 

              
(3)

On the other hand, in the literature the local loss hm may be 
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Figure 2 
Subcritical flow over a negative step 
(dashed line shows the inclined step)

Figure 1
Subcritical flow over a positive step 

(dashed line shows the inclined step)
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represented as a fraction of velocity head, U2/2g (Chow, 1959). 
In the present study, the following local loss equations were 
used:

       for positive steps      (4a)

The above equation can be non-dimensionalised by dividing 
each term with the flow depth as:

        for positive steps    (4b)

where:
       is the Froude number at Section 2. 

      for negative steps      (5a)

Similarly, Eq. (5a) can be non-dimensionalised as:

            for negative steps   (5b)

where: 
     is the Froude number at Section 1. 

Another form of local loss is defined as (Chow, 1959):

       for positive steps     (6a)

Dividing each term by the flow depth, the non-dimensionalised 
form of Eq. (6a) is obtained as:

 
        for positive steps     (6b)
 
       for negative steps     (7a)
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Table 1
Limiting values of experimental data for positive steps

Type Abrupt Abrupt Abrupt Abrupt Inclined Inclined Inclined
Dz (cm) 3 5 7 10 3 5 7
# of data 46 45 57 53 42 39 46
Q min (ℓ/s) 3.97 2.67 5.48 5.20 4.66 4.16 4.74
Q max (ℓ/s) 17.90 17.16 16.82 16.51 17.35 17.04 16.79
y1 min (cm) 10.97 11.77 16.62 19.44 10.29 13.02 13.92
y1 max (cm) 31.17 31.35 32.03 34.69 30.64 32.90 32.77
y2 min (cm) 7.81 6.29 9.09 9.06 6.98 7.72 6.23
y2 max (cm) 28.07 26.25 24.78 24.44 27.58 27.77 25.50
hm min (mm) 0.04 0.03 0.03 0.31 0.11 0.09 0.12
hm max (mm) 2.85 3.97 5.67 5.04 1.27 2.04 1.93

Table 2
Limiting values of experimental data for negative steps

Type Abrupt Abrupt Abrupt Inclined Inclined Inclined
Dz (cm) 3 5 7 3 5 7
# of data 48 50 47 47 48 48
Q min (ℓ/s) 4.69 5.42 5.48 4.65 4.15 4.74
Q max (ℓ/s) 17.89 17.62 16.81 17.35 17.03 16.78
y1 min (cm) 8.08 8.00 10.64 6.90 7.73 6.27
y1 max (cm) 22.16 24.59 24.85 23.95 24.83 25.57
y2 min (cm) 11.10 13.17 17.71 9.98 12.80 13.46
y2 max (cm) 25.19 29.76 31.96 27.06 29.91 32.78
hm min (mm) 0.02 0.02 0.03 0.02 0.01 0.02
hm max (mm) 0.33 0.41 0.43 0.38 0.52 0.55

Similarly,

       for negative steps     (7b)

In the above equations subscripts p and n refers to positive 
and negative steps in coefficients K1 and K2, respectively.

Experimental study

The experiments were carried out in a horizontal rectang- 
ular channel having 25 cm width, 50 cm depth, and 10.5 m 
length (Fig. 3). The channel is made of concrete and fibre-
glass. The section where the observations were done has 
fibreglass sidewalls and a concrete bottom. The steps used 
are made of fibreglass. The step heights used were 3 cm,  
5 cm, 7 cm, and 10 cm for abrupt steps, and 3 cm, 5 cm,  
and 7 cm for 45o inclined steps. The water depths were 
measured by a movable point gauge, which has an accuracy 
of ±0.01 cm.

Water was supplied from a constant head tank having 
a maximum capacity of 125 ℓ/s through an 18 cm diameter 
pipe. The maximum capacity of the channel was 23.5 ℓ/s. 
Discharge entering the system was controlled by a valve  
in the delivery pipe. The depth of flow was adjusted by a 
sluice gate at the end of the channel. After the sluice gate, 
water is collected in a small basin, which directs the water 
to a return channel having a 30o triangular weir at the end. 
This triangular weir is used to measure the discharge with 
an accuracy of ±1.5%. The limiting values of experimental 
data for positive and negative steps are given in Tables 1  
and 2, respectively. In the experiments conducted the range 
of the Froude number on the step was 0<Fr<0.5.
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Analysis of data 

Positive steps

The dimensional analysis applied to variables   
           gives the following dimensionless 
parameters:

              
(8)

where: 
Dz is the positive step height
f is the inclination of the step 
Fr2 is the downstream Froude number (Froude number on 
the step). 

Positive abrupt steps

For the local energy loss hm, relationships which have the fol-
lowing forms have been analysed:

              
(9)

where: 
a, b, and C1 are the constants to be determined from the 
data. These constants are determined by using the best fit 
curves as: a=0.25, b=2.0, C1=0.70. 

Therefore, the local loss for a positive abrupt step may be 
formulated as:

              
(10)

The plot of Eq. (10) is shown in Fig. 4 together with the 
standard deviation lines and data points. The best fit line has 
a correlation coefficient of R=0.85 and a standard deviation 
of 0.004.

Local loss coefficients for positive abrupt steps

In order to calculate the numerical values of the local loss  
coefficients Eqs. (4b) and (6b) are used for positive steps.  
K1p defined in Eq. (4b) is calculated from the graph of hm/y2 
versus Fr2

2 /2 (Fig. 5). The slope of the best fit line is nothing 
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but the corresponding loss coefficient which is calculated to be 
0.27. Similarly, K2p is determined from the graph of hm/y2 drawn 
vs. (U2

2  – U1
2 )/2gy2 as shown in Fig. 6. The slope of the best fit 

line is 0.53 which is the local loss coefficient defined by Eq. 
(6b) for positive steps. 

Positive inclined steps

In the present study, the local loss for positive inclined steps 
is studied for only one value of f=45o, to compare with that 
of abrupt steps. Therefore, the relationship does not include 
the inclination angle and an analysis similar to that for posi-
tive abrupt steps was performed. The equation obtained is as 
follows:

              
(11)

The plot of Eq. (11) and its standard deviation lines are shown 
in Fig. 7 together with data points. The correlation coefficient 
of the Eq. (11) is R=0.78 and the standard deviation is 0.0025.

Local loss coefficients for positive inclined steps

Local energy losses at 45° inclined steps can also be rep-
resented with local loss coefficients, K1p and K2p, which are 
defined in Eqs. (4b) and (6b), respectively. Figure 8 shows the 
variation of hm/y2 with respect to Fr2

2 /2. The corresponding 
slope of the best fit line is K1p which is equal to 0.15. Similarly, 
Figure 9 shows the change of hm/y2 with (U2

2  – U1
2 )/2gy2 and the 

corresponding slope of the best fit line is the local loss coeffi-
cients, K2p, which takes a value of 0.25.

Discussion of results for positive steps

Formica (1955) obtained the values of K1 for sudden and 
gradual contraction in width for rectangular channels. Based on 
Formica’s results, Chow (1959) suggests to use an approximate 
median value of K1=0.10 and K1=0.06 for abrupt and gradual 
contractions, respectively. In the present study, the values of the 
local loss coefficient expressed with Eq. (4) are: 0.27 and 0.15 for 
positive abrupt and inclined steps, respectively. 

Morris and Wiggert (1972) suggested using a value of 0.4 
for sharp transitions and 0.2 for wedge transitions in the case 
of contracting sections. Similarly, Brater and King (1976) 
obtained the local loss coefficient expressed by Eq. (6), K2=0.5 
for abrupt contractions and suggested using a value of 0.1 for 
designing contracting channels. These values are compat-
ible with the local loss coefficients obtained from the present 
experimental studies of 0.53 and 0.25 for positive abrupt and 
inclined steps, respectively. 

Unfortunately, there is no published study which gives the 
local loss coefficients for contractions due to positive steps, 
and which could have been used for comparison purposes. It is 
believed that this study fills that gap and gives the average val-
ues of local loss coefficients, K1 and K2. The present study also 
provides a relation, which computes the local loss as a function 
of downstream Froude number, and relative step height, Dz/y2. 
Hence, it is suggested that Eqs. (10) and (11) are used for posi-
tive abrupt and 45° inclined steps, respectively.

Negative steps

The dimensional analysis applied to variables   
gives the following dimensionless parameters:

hm/y2 = 0.53(U2
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0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.02 0.04 0.06 0.08

h m
/y

2

(U2
2-U1

2)/(2gy2)

0

0.005

0.01

0.015

0.02

0.025

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

h m
/y

2

(Fr2)1.2(z/y2)0.42

Data
Eq. (11)
+ SD
- SD

hm/y2 = 0.15Fr2
2/2

0

0.005

0.01

0.015

0.02

0.025

0 0.05 0.1 0.15

h m
/y

2

Fr2
2/2

hm/y2 = 0.25(U2
2-U1

2)/(2gy2)

0

0.005

0.01

0.015

0.02

0.025

0 0.05 0.1 0.15

h m
/y

2

(U2
2-U1

2)/(2gy2)

Figure 8 
hm/y2 versus (Fr2)

2/2 for positive inclined steps 

Figure 9 
hm/y2 versus (U2

2-U1
2)/(2gy2) for positive inclined steps

Figure 6 
hm/y2 versus (U2

2-U1
2)/(2gy2) for positive abrupt steps 

Figure 7 
hm/y2 versus (Fr2)

1.2(Dz/y2)
0.42 for positive inclined steps 

 
420

2

21
2

2

040
.

.m

y
zFr.

y
h








 


  ,g,z,y,Ufhm 11



Available on website http://www.wrc.org.za
ISSN 0378-4738 (Print) = Water SA Vol. 37 No. 2 April 2011

ISSN 1816-7950 (On-line) = Water SA Vol. 37 No. 2 April 2011242

              
(12)

where: 
Dz is the negative step height, 
f is the inclination of the step and 
Fr1 is the upstream Froude number (Froude number on the 
step). 

Negative abrupt steps

For the local energy loss hm, relationships which have the fol-
lowing forms have been analysed:

              
(13)

where: 
a’, b’, and C1’, are the constants to be determined from the 
data. These constants are determined by using the best fit 
curves as: a’=2, b’=0.5, C1’=0.34. Therefore the local loss 
for an abrupt step may be formulated as:

              
(14)

The plot of Eq. (14) is shown in Fig. 10, together with data 
points and the standard deviation lines. The correlation coef-
ficient of the Eq. (14) is R=0.98 and the standard deviation is 
0.002.

Local loss coefficients for negative abrupt steps

Local loss coefficients are calculated for negative steps as was 
done for the positive step. The numerical values of the local 
loss coefficients are calculated by using Eqs. (5b) and (7b) for 
negative steps. K1n defined in Eq. (5b) is calculated from the 
graph of hm/y1 vs. Fr1

2 /2 (Fig. 11). The slope of best fit line is  
the corresponding loss coefficient which is calculated to be 
0.40. Similarly, K2n is determined from the graph of hm/y1 vs. 
(U1

2  – U2
2 )/2gy1 as shown in Fig. 12. The slope of the best fit line 

is 0.89 which is the local loss coefficient defined by Eq. (7b) for 
negative steps. 

Negative inclined steps

In this study, only an inclination of 45o was investigated for the 
negative step. Examination of the data revealed the following 
equation:

              
(15)

The plot of Eq. (15) together with the experimental data is 
shown in Fig. 13. The correlation coefficient of Eq.(15) is 
R=0.99 and the standard deviation is 0.002.

Local loss coefficients for negative inclined steps

Similar to the positive inclined steps, local losses at 45° 
inclined steps can also be represented with local loss coef-
ficients, K1n and K2n, which are defined in Eqs. (5b) and (7b), 
respectively. Figure (14) shows the variation of hm/y1 with 
respect to Fr1

2 /2. The slope of the best fit line is K1n, which is 
equal to 0.49. Similarly, Fig. (15) shows the change of hm/y1 
with (U1

2  – U2
2 )/2gy1 and the corresponding slope of the best  

fit line is the local loss coefficient, K2n, which takes a value  
of 0.97. 
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Discussion of results for negative steps

Comparing the results obtained for negative abrupt and nega-
tive inclined steps (f=45°), it is seen, contrary to expectation, 
that the local loss in negative abrupt steps is less than the local 
loss in negative inclined steps, by approximately 10%. The 
formation of the separation zone in abrupt steps might cause 
the flow to occur smoothly leading to less energy loss. Formica 
(1955) obtained the average values of the local loss coefficient 
for 8 different configurations of expanding channel widths. He 
defined the loss coefficient as a function of the square of the 
upstream and downstream velocity difference. For the abrupt 
expansion the average value of 0.82 is obtained. The minimum 
value of 0.27 is suggested for one of the configurations. It 
should be noted that the 45° expansion gives the highest loss 
coefficient of 0.87.

No study could be found in the literature for negative 
steps either. Comparison of the present data was made with 
the studies done for rectangular channels having expansion 
in width. Brater and King (1976) reported the local loss coef-
ficient, K2=1.0 for abruptly expanding channels and suggested 
use of the 0.2 value for design purposes in expanding channels. 
Morris and Wiggert (1972) suggested using 0.75 for sharp tran-
sitions and 0.5 for wedge transitions in the case of expanding 
sections. In the present study, as explained above, the average 
values for the local loss coefficients for abrupt negative steps 
and 45° inclined negative steps were found to be 0.89 and 0.97, 
respectively. 

This study thus fills the gap in the literature for negative 
steps. It is seen that local loss occurring due to negative steps 
depend on the Froude number and the relative step height. 
Hence, it is suggested that Eqs. (14) and (15) be used for nega-
tive abrupt and 45° inclined steps, respectively. 

Relative energy loss for positive and negative steps

In the literature, it is commonly assumed that the magnitude 
of local energy loss will be small. To determine how small 
these losses are, relative local energy loss, hm/E was calcu-
lated for both positive and negative steps for the range of 
Froude numbers used in this study. E is the specific energy 
on the step for both cases, defined as the sum of depth 
and velocity head. For both of the step configurations, the 
Froude number and the specific energy on the step were 
used. Fig. 16 shows the relative energy loss (hm/E2)% vs. 
the Froude number (Fr2) on the step for positive abrupt and 
inclined steps. It can be seen from Fig. 16 that both losses 
are compatible, but that the abrupt loss is slightly higher 
than the inclined loss value. Similarly, Fig. 17 shows the 
relative energy loss (hm/E1)% versus the Froude number (Fr1) 
on the step for negative abrupt and inclined steps. This time, 
it is seen that, though the losses on the abrupt and inclined 
steps, are comparable, the abrupt step gives a loss that is 
slightly lower than that for the inclined step. It can be con-
cluded that the relative loss increases with increasing Froude 
number. Skogerboe et al. (1971) showed that the local loss 
coefficients are not constants. Also, in the present study it 
was found that the negative step yields more loss when com-
pared to the positive step. This is also validated by the work 
of Brater and King (1976). The local loss coefficient, K2, was 
suggested to be 0.5 and 1, for abrupt contractions and expan-
sions, respectively, even though Formica (1955) showed that 
in general sudden contractions have higher head losses than 
sudden expansions. 
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Figure 17 
Relative energy loss for negative abrupt and inclined steps

Figure 14 
hm/y1 versus (Fr1)

2/2 for negative inclined steps

Figure 15 
hm/y1 versus (U1

2-U2
2)/(2gy1) for negative inclined steps 

Figure 16 
Relative energy loss for positive abrupt and inclined steps
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Conclusions

Based on the experiments performed and the obtained results 
for positive and negative steps in a subcritical open channel 
flow, for a Froude number range of 0<Fr<0.5, the following 
conclusions can be drawn:
• The local energy loss caused by positive and negative 

steps in a subcritical open channel flow is a function of the 
Froude number on the step and relative step height

• Local energy losses at abrupt positive steps may be com-
puted by using Eq. (10): 

• Local energy losses at 45° inclined positive steps may be 
computed by using Eq. (11): 

• For all practical purposes, K1p can be taken as equal to 0.27 
for positive abrupt steps and 0.15 for 45° inclined positive 
steps 

•	 K2p can be taken as equal to 0.53 and 0.25 for positive 
abrupt steps and 45° inclined positive steps, respectively

• Abrupt positive steps generally introduce slightly higher 
local losses than the inclined positive steps; and the loss 
increases with increasing downstream Froude number

• Local energy losses at abrupt negative steps may be com-
puted by using Eq. (14): 

• Local energy losses at 45° inclined negative steps may be 
computed by using Eq. (15): 

• For all practical purposes, K1n can be taken as equal to 0.40 
for negative abrupt steps and 0.49 for 45° inclined positive 
steps

•	 K2p can be taken as equal to 0.89 and 0.97 for negative 
abrupt steps and 45° inclined negative steps, respectively

• Abrupt negative steps introduce slightly lower local losses 
than the inclined positive steps and the loss increases with 
increasing downstream Froude number 

• The relative energy loss occurring in negative steps is 
higher than that occurring in positive steps
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