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ABSTRACT

The dynamic response of a multi-degree-of
freedom (MDF) system with non-proportional
damping subjected to harmonic loads is
considered. Modal substitution is employed to
transform the coupled differential equations of
motion from geometric to modal coordinates. As
might be expected, the modal transformation does
not uncouple the differential equations of motion
because of the inherent non-proportional damping,
but transforms them into a system of coupled
algebraic equations of convenient form for
solution. The modal coordinates are Jhen easily
determined with the help of conventional
techniques for solving systems of coupled
equations. The method presented gives a closed
form solution without the need to resort to iterative

procedures, which would oth!!rwise be necessary
for other types of more irregular excitations like
earthquake ground motions. Besides, it presented a
technique of compiling th~ damping matrix ofMDF
systems' exhibiting different mechanisms of energy
dissipation in different regions. The application of
the method is illustrated on a two-mass system,
whose foundation interacts with the supporting soil
- a phenomenon resulting totally to a four-degree
of-freedom system.
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INTRODUCTION

The method of modal transformation is well
recognized as a powerful technique to transform
and uncouple the differential equations of motion
of classically damped linear MDF systems. This is
possible, because one may set the damping matrix
proportional to either the mass or the stiffness
matrix or both. A type of damping proportional to
both the stiffness and mass matrices is called

Rayleigh damping. A proportional damping is
appropriate as far as the energy dissipating

mechanism is more or less of uniform· nature
tirroughout the system.

This, however, is not always the case. There' are
vibrating systems, in which it is not possible to
employ a global proportional damping matrix for
the whole system. Examples of such systems
include structures, whose foundations interact with
the soil. Another group of examples includes
structures made of different materials in distinctly
different regions - say a building structure with
steel frames up to a certain height and concrete
frames above that or vice versa [1,2].

Unlike in classically damped systems, the damping
matrix' of such systems cannot be set proportional
to the mass and stiffness matrices. This is because

of the inherent different mechanisms of energy
dissipation in the different regions of the system.
Generally speaking, such systems may not always
have orthogonal modes. These systems are known
as non-proportionally or non-classically damped
systems.

The dynamic analysis of non-classically damped
systems is generally more demanding than that of
classically damped systems. This is particularly
true when one deals with structures, whose
foun~ations interact with the underlying soil.
Whereas the damping of the superstructure can for
most practical purposes be considered to be of
viscous nature, and thus a proportional damping,
the damping in the soil is of different nature that
cannot be set as such. Damping in soils is generally
composed of geometric and material damping. The
geometric damping is a result of energy dissipation
due to waves propagating into the soil mass and
away from the foundations. It can be the most
important source of energy dissipation in thick
deposits of soils. The material damping, on the
other hand, represents energy dissipation due to the
cyclic nature of the loading. This damping
increases with increasing level of strains. As a
result of this, material damping could be a good
source of energy dissipation in systems subjected to
strong earthquakes, whereas the geometric
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damping is mon: important in the vibration of
foundations providing support to machines, in
which the deformations are in the order of fractions
of a millimeter.

In this paper, the dynamic response of an MDF to a
set of harmonic loads is considered. The system has
a non-proportional damping. Modal superposition
is employed to transform coordinates. It has been
shown that the modal substitution results in a

transformation of a system of differential equations
into a set of linear algebraic equations that can be
solved easily. The number of equations in the latter
is double the number of modes used for the
coordinate transformation. The modal coordinates

cu:ethen easily determined making use of simple
matrix algebra'. The technique presented is
illustrated by imexample consisting of a reinforced
concrete frame subjectep to harmonic loads at the
roof leveL Two different damping mechanisms are
considered. A proportional damping is employed
for the superstructure and a geometric damping is
used for the substructure. Thf)..latter is based on
recent works on foundation dynamics [3,4,5].

'The solution of Eq. (1) for common systems With
proportional damping, where the damping matrix
can be set proportional to the mass and/pr stiffness
matrices, involves a relatively straight forWard
operation. In this work, the 'Solution of this
equation is sought for non-proportionally damped
systems subjected to a set· of harmonic loads
through the modal transformation of

(2)

where [¢] is the modal matrix with the natural

modes, {¢J, as its columns and {Zn lis the vector

of modal coordinates. Very often, inclusion of only
a few numbers of the natural modes in Eq. (2) gives
sufficiently accurate results of the response.

Free Vibration - Natural Frequencies and
Natural Modes

The natural modes, {¢}, required in Eq. (2) are

determined by solvi~ the eigenvalue problem
associated with the undamped system and given by

in which (On are the natural frequencies.

For nontrivial solution of Eq. (3), the determinant
of the coefficient matrix in the round brackets on
the left side is set to zero:

The solution of Eq. (4) yields the natural
frequencies of the system. Substitution of the
frequencies in turn in Eq. (3) yields all the natural
modes.

(3)

(4)

THEORY

Equations of Motion

The material presented is expected to shade light
on the importance of accounting for different
sources of damping, a seemingly illusive property
of vibrating systems that lessens damages, in the
analysis of structures subjected to dynamic loads.
Specifically, the technique presented could be of

. special interest to engineers dealing with vibrating
systems that have damping difficult to deal with
using approaches that are limited to classical
damping only. This is the case, for example, in
structures, whose foundations interact with the
surrounding soiL

The governing differential equations of motion of
elastically behaving MDF systems subjected to
externally applied dynamic loads are given by

[m ]{ii} + [c]{ti} + [k]{u} = {j(t)} (I)

where [m], [c] and [k] are the mass, damping and

stiffness matrices of the system, and {u} and {ren}
are the displacement and external force vectors,
respectively.

The solution of Eq. (4) for non-proportional
damped systems is generally not as straight forward
as for proportionally damped systems. In some
cases of such systems, the stiffness matrix itself can
be frequency dependent. This is, for example, the
case in structures, whose foundations interact with
the underlying soil. The solution ofEq. (4) in such
cases may generally demand iterative procedures,
in which the predominant frequency can be used as
the controlling parameter. It can be shown that the
natural modes so obtained satisfY the orthogonality
condition with respect to the stiffness matrix as in
the case of proportionally damped systems [5]. The
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Vibration of Non-Classically Damped Systems 3

orthogonality condition with respect to the mass
matrix is always satisfied.

For the. special case of systems subjected to a set of
harmonic loads of single frequency, OJ, which is
considered in this work, the stiffness matrix can be

uniquely determined usmg the resonance
frequency. The natural modes satisfy thus both
orth~gonality conditions with respect to the mass
and stiffness matrices.

where N is.the number of modes included in Eq:(2)
and the subscript m stands for the m'h mode. The
coupling is once again evident in the second term
ofEq. (6b).

Response to Harmonic Loading

The special case of a set of harmonic loads is now
considered with the excitation frequency, OJ, but

different amplitudes given by

Modal Transformation (7)

Substituting Eq. (8) and its time derivatives in
Eqs.(6), one obtains

In Eq. (8); Zo are the amplitndes of the modal
cQOrdinates. Due to the shift in phase' of the
response with respect to the excitation, these
amplitudes are complex quantities.

(8){z(t)} = {zo }eicd

where fo are the force amplitudes. Dropping the
transient response, the steady-state solution to

Eqs.(l?) for at-rest initial condition is also harmonic
and given by

(6a)

Once the eigenvalue problem of Eq. (3) is solved,
the coordimte transformation is accomplished by
substituting Eq. (2) into Eq (J) to obtain

[ml¢]{iJ +[cl¢]{iJ+ [kf¢]{zJ = {J} (5)

Pre-multiplying 'Eq (5) by [¢y and noting the

orthogonality conditions, one obtains

,where, the generalized mass and .stiffness matrices

in Eq. (6a) are diagonalized having the diagonal

elementsM m ~ {¢mYrmH¢Jand

Km = {¢mYlk]{¢J, respectively.

and separating the real and imaginary parts, one
obtains the following system of 2N equations:

Noting that the complex vector {zo} can be

written as

where {po} is the vector of the amplitudes of the

modal forces, F. It is to be noted that the coupled
differential Eqs. (6) are now transformed into the
algebrai'c Eqs. (9) for the complex amplitudes, ZmO,

coupled through the damping terms.

(10)

(11)[AHzOR}- OJ[cHzoJ } = {Fo}

[AHzoJ }+OJ[CHZOR} = {a}

The modal damping matrix, [C] = f¢ f[c I¢],
remains, on the other hand, still non- diagonalized
because of the non-proportional nature of the
damping of the system considered. This is
attributed to the different nature of damping
mechanisms in different parts of the system. The
modal damping matrix has

em, = {¢J[c]{¢,}= L,L;¢,m¢;,cij as its elements, in

which the subscripts m and n refer to the mth and nth

modes, ~hereas j and j are summation indices. The
differential equations of (6a) remain thus generally
coupled through the damping terms despite the
transformation [5].

The modal force vector has Fm = {¢mY {r} as its

elements. The vector {z} is the vector of modal
coordinates.

Equation (6a) can also be written as In Eq. (11), the matrix [A] is a diagonal matrix with

K m - OJ2M m as its elements.

m=J, 2, 3, ..., N (6b)
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After some rearrangement, the 2N equations of
(11) can be concisely written in the following form:

in which the modified vectors in Eq. (1i) are given
by

It can be easily shown that the 2N by 2N

coefficient matrix [8] is given by

in which {UaR} and {Uo1} are the real and

imaginary parts of the vector {u}. The damping
matrix needed in Eq. (17) is assembled in a similar
manner to the one in the previous procedure. It is to
be noted, however, that the free vibration analysis
is mandatory in order to assemble the damping
matrix.

This alternative procedure has its own shortcoming
in that it does not provide for a means of
identifying the contributions of the indjvidual
modes to the overall response. Besides, it does not
have the advantage of estimating the response on
the basis of the first few modes only that contribute
most. This is especially important in systems of
large numbers of degrees of freedom and taking
into account the fact that the proposed method
involves the simultaneous solution of a system of
equations of double the number of the degrees of
freedom. These shortcomings will be evident in the
simple illustrative example treated at the end, in
which the fundamental mode is almost the sole
contributor to the overall response.

(12)

(13)

(14)
[B]=[[A][el

{i}= {{ZOR}} ,and {o'}= {{Fo}}'{ZO/}· {a}

where [A] is a diagonal matrix with its elements

given by Mm (tV m 2 - tV 2 )/ tV for the mth row. The

submatrix .[C] is the. generalized damping matrix
explained under Eq. (6a). The assembly of this
matrix wil~be'discussed in the next section.

The modified modal coordinates are then easily
determined through inversion' of the coefficient

matrix [B) as

(15)

The amplitudes of the actual mpdal coordinates are
determined from the argument of the complex
modal displacement. For the mth mode, this is given
by

Assembly of the Damping Matrix

It is clear from Eqs. (14) and (15) that the damping
matrix should first be established in order to
determine the modal displacements. This task is
relatively demanding in the dynamic analysis of
non-classically damped systems. Depending on the
inherent· mechanisms, different regions of such
systems could generally dissipate energy in
differeht form and proportion.

Finally, the displacement amplitudes of interest in
the geometric coordinates are obtained from Eq.(2).

It is important to remind the reader that the solution
can also be found directly from Eq. ~l), which, for
harmonic loading, transforms itself directly into 2N
coupled algebraic equations without the need for
the modal transformation explained above. With

the substitution {u} = {UO}ei" and after separating

the real and imaginary parts Eq. (1) takes the
following form:

One way of assembling the damping matrix in such
systems involves partitioning the matrix into sub
matrices corresponding to the distinctly identified
regions. Depending on the specific nature of the
given system, part or all of these sub-matrices are
then established as proportional damping matrices
separately. These are later on assembled to obtain
the non-proportional damping of the entire original
system [I).

One commonly employed type of proportional
damping is Rayleigh damping, which is establtshed
as a linear combination of the mass and stiffness

matrices. It is of the form [1,2]

Qk]- w2[m]XuOR}- w[c]{UO/}= {!oJ

w[c]{uoR}+Qk]-w2[mlXuO/}= to}
(17)

[C] = a[k]+ p[m] (18)
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Vibration of Non-Classically Damped SY6tems 5

III which ;r and ;s are: the' specified damping
ratios for the selected tW0 modes - the r,h and S,h

modes - with the corresponding controllIng

frequencies OJ r and OJ s . If the two modal damping

ratios are specified to be one and the saine, say; ,

then Eqs. (19) simplify to

fobexp(iwt)

.... .. .','

ILLUSTRATIVE EXAMPLE

. ,.

A 30cm-thick and 3.5m by 10.5m concrete
platform shown in Fig. I Catrles at its center a
vibrating machine inducing a harmonic horizontal
force of 120 kN amplitude and 50 'Hz frequency
'due to an unbalanced mass. The' platform is
supported by six 30cm by 30cm and 2.5m-high
reinf{)rced concrete col1.i.mnsarranged in two rows.
The columns are in turn supported by a 40cm-thick
and 4.3m by lUm rigid mat embedded 1.0m into
the underlying deep uniform clay formation ..It is
required to determine the vibration amplitudes of
the roof slab and the base shear and overturning
moments at the base of the columns using a .simple
planar (2D) two-mass oscillator model with due.
consideration of the interaction of the rigid
foundation with the surrounding soil. This results
in a four-degree-of-freedom system. The cll))'
formation may be assumed to have a uniform
behavior with depth and exhibiting a unit weight.of
16.8 kN/m3, a Poisson ratio of 0.42 and an initial
tangent shear modulus of 60 MPa. For the concrete
in the superstructure and the foundation, a unit
weight of 24 kN/m3 and an elastic modulus of 25
GPa may be used.

(19b)

(19a)

(20a)

(20b)

2~a =-
OJr+OJs

2(j) rOJ sq = (j)r(j) sa
/3= (j) +(j)sr

The value of ; in the above technique can be

easily selected from experimental results depending
on the nature of the material and structural system.
It is recommended in the literature to use the

fundamental frequency as one of the controlling
frequencies. The other controlling frequency is
recommendeq to be one among the higher
frequencies [1J.

where [c], [k] and [m] are the dampin~, stiffness
and mass matrices, respectively. The coefficients a
and b are proportionality constants that are
determined by exploiting the two orthogonality

.conditions, which the natural modes satisfy with
respect to the stiffness and mass matrices. For this
purpose, two modal damping ratios for two
selected modes are specified. It Ci;lIl by easily
shown that these constants are given by

A concrete platform providing support
to a vibrating machine

To the category of non-classically damped systems
belong structures, whose foundations interact with
the surrounding soil. In such systems, the Rayleigh
damping explained above can be used for the
superstructure as far as this is made up of the same
material and structural system, say reinforced
concrete framed/dual system or steel structure. On
the other hand, the foundation damping is of
different nature involving both hysteresis and
geometric damping. A proportional damping
cannot be employed in this case. Instead, the
principles of foundation dynamics aie employed.
This is striytly adhered to in the example problem
solved below to illustrate the application of the
method presented in the foregoing section.

Figure 1

"

~." ~t: ;, ~','

Bf

.•. :'.-

~
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E.q in Eq. (E2) is the equivalent stiffness, and Ie.

and Ief are the mass moments of inertia of the roof
slab and the rigid foundation mat about their
tespective centroidal horizontal axes perpendicular
to the plane of the' page.

The following parameters are also needed in the
determination of the stiffness and damping
coefficients of the foundation:

Figure 2 A four-degree-of-freedom oscillator
model for the system of Fj.gure 1

v = 0.42

ao =wBI2v, =1ifB ~ =3.61Vag .

a = cjcs ':::lCp/cs = ~2(1- u)/(l- 2u) = 2.693

(E3)

Solution

In the first place, the stiffness and, mass mati-ices
are established. As the degrees of freedom
indicated in Fig. 2 are selected at points, where the
masses are lumped, the mass matrix is
diagonalized, whereas the stiffI).ess matrix is not.
These matrices can be'easily determined using the
direct stiffness approach as follows:

[m,

000

[~]= :

l'00"
0

mf
0

0

0II(

11£1

6EI-11£16EI

7- ITh'IT(EI)6EI
4EI-6EI1£1

[JIlT h h'
h'

k = -11£1" - 6EI 12EI -6EIh' h' JT+K. h'
6EI

2EI-6EI
4EI +KIT hh'h '

The various quantities needed in the mass and
stiffness matrices of Eq. (E 1) are provided below in
a consistent set of units of measurement:

The parameter ao in Eq. (E3) is a dimensionless
frequency parameter; the dimensionless parameter
a is the ratio of the shear wave velocity, CL, to the
longitudinal. wave velocity, cs, of the foundation
soil.

The static stiffness coefficients, Kh:sr and Kr,'h

corresponding to. the horizontal and rocking
degrees of freedqm of a rectangular foundation
embedded in a homogenous half-space are
determiried as follows [3]:

GB [ (LJon ]
K.st = -- 6.8 - +2.4+0.8(L/B-I)

.' 2(2-v) B

[( 1.34 X 2DJO"]1+ 0.33+ I+(L/B) B
1.85xlO6 kN/m

K = os' [3.7i 1:..)+ 0.8]',n 8(1- v) :'\B

[ 2D ,( 1.6 ) (2D)']1+8+ 0.35+(£/B) 8
= 17.23xl06kNm

The dynamic stiffness coefficients are obtained

from [3]

The dynamic spring coefficients become then

Kh = khKh.st = 1.85 X 106 kN/m ;

Kr =krK"st = 0.427(17.23 x 106)

=7.357xI06kNm

E.q = 0.5Ee= 12.5x106 kN/m2
Ie = 6xO.34/12= 4.05xlO·3m4

E.le= 50.625xlO~m2
mr = 24xO.3xJ.5xlO.5/9.81= 26.98 kNsec2/m

mJ = 24x0.4x4.3xl1.3/9.81= 47.55 kNsec2/m
lOr =m,B//12=26.98x3.52/12= 27.54 kNmsec2

(E2)

IIJf = mjB}1l2=47.55x4.32/12= 73.27 kNmsec2
h = 2.5m '

G = 6Ox103kN/m2

B=BJ= 4.3m; Lr 11.3m
LJBJ = 11.3/4.3 = 2.628

JournalofEEA, VoL 22,2005
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24- 0.4 2. --+a

(LIB) 0

0.427
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The mass 'and stiffness matrices of the entire

system can now be compiled as given below:

r·38.88

[k]= 48.60
- 38.88

48.6

o

o

47.55

o

Mode 4

w4 =318.67/sec

Mode 3

w3 = I 99.47/sec

Mode 2

w2 =63.4/sec

Mode I

WI =15.8l!sec

Figure 3 The natural modes and circular frequencies
of the system

(E4)

X 10J

48.6

40.5

-48.6

7438

o

o

o

73.27

-38.88

- 48.60

1888.88

-48.6

48.60

81

- 48.60

40.5

..JJ

27.54

o

o

26.98

o

o

o

[m]=

The eigenvalues and the eigen.vectors are
determined and the subsequent matrix operations
performed using MATLAB 7.0. The resulting

spectral 'and modal matrices with A = Q) 2 are thus

Similarly, the force vector takes the form:

vY = {120 - 42 0 O} (E5)

The damping matrix is next established, in which
Rayleigh damping is employed for the
superstructure only. The two proportionality
constants needed for this purpose are evaluated in
accordance with Eq. (20) as

a =2; /(OJI + OJJ = 4645 x 10-4 see, and

j3 =: 2OJIOJl/((j)1 + (j)J = 1.465sec-1

It is evident from the spectral matrix in Eq. (E6)
that none of the eigenvalues (the quantities in the
main diagonal of [A]) is identically zero verifying
the fact that the natural modes of the non
classically damped system considered here are
orthogonal with respect to the mass and stiffness
matrices.

r 0.1607 -0.1058 -0.0057

[cD]= -0.1049 ·0.1589 -0.0071
0.0006 -0.0069 0.1448

-0.0005 0.0016 0.0017

With these coefficients, Eq. (18) yields the
damping of the superstructure as follows:

Thel dashpot coefficients for the horizontal and
roeklng motions of the foundation are determined
in accordance with recently published materials
[3,4] on foundation dynamics using

48.60]
X 10-1 + 1.465

81.00

o ] [57.585 22.575]27.54 = 22.575 77971

[cL = 4.645 x [38.8848.60

x [26~98

c = QocKs,
OJ

The dynamic coefficients Ch and Cr for the
horizontal and rocking motions of the foundation
are given by

(E6a)

(E6b)
0.0022

0.0018

- 0.0020

0.1l68

: jXlo'sec.'1.0155

o

o

0.3979

o •

o

0.0402

o

olO'0~25

[A] = o

•0

The natural circular frequencies are easily obtained
as the square roots of the eigenvalues:

WI = 15.81 sec·l; Q)2 =63.40 sec·l; Q)3 = 199.47

sec·l; w4 =318.67 sec'l;

4L d
Ch = - = 4x 2.628 = 10.512' an

B

4aL ao _ 8.085

Cr = 3B 2.2-0.4/(L/Bf+ao2-

The natural mode shapes corresponding to the four
vectors of the modal matrix in Eq. (E6) are
sketched in Fig. 3.

This yields for the dashpot coefficients
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Ch = 3.6IxI0.5l2 x1.85x106
314.15 , and

= 223.48 x 103 /eN see
m

C =3.6lx8.085x7.357x1Q6
r 314.15

= 683.52x 103 kNmsec

Asrat Worku

[-313.36"4 00 0 ]

'.' 0 '-30ij64 0 I>

[A]: 0 . '0 -187.505 0
. 0 0 0 9.083

After compiling the matrix [B] according to.
Eq.(14), the vector:- of the modified, modal
coordinates is calculated usiilg Eq. (15) to obtain

The damping matrix for the entire system then
becomes

0.0576D.022600

I X 103[e] = I 0.0226

0.07800 (E7)

0

0223.480
0

00683.52"

The

generalizedmass,sti~essanddaIilping
matrices are calculated next to obtain:

1

000

0

10
01= [I][M]=I 0
010

0

001

~r = {- 0.2405 0.0637 0.004 - 0.0019.} x 10-3- 0.0012 0.0007 0.0001 - 0.0001'

The first four elements are the real parts and the.
remaining four elements are the imaginary parts of
the corresponding complex modal displacement
amplitudes. The vector of the arguments of the
modal coordinates is obtained by applying Eq. (16).
This gives

tzolY = {0.2405 0.0637 0.0004 0.0019}xlO+ (ElO)

It is noted that in this particular case, the imaginary
components are all negligibly small. Finally, the
vector of the displacement amplitudes .in th~
geometric coordinates is obtained from Eq. (2): -

As expected, the generalized mass and stiffness
matrices in Eq. (E8) are diagonalized due to the
orthogonality conditions. Furthermore, these two
matrices are identical to the unit and spectral
matrices, respectively. This indicates that the
modal vectors in [<1>] are normalized· with respect to
the mass matrix. Such modes are also called
orthonormal modes. In contrast, the generalized
damping matrix is not diagonalized.

0 00
0.0402

0.0
Ix10' sec·>0

0.39790
0

01.0155

[O'0~25

[K]= O'

o

[0,0018 -0.0014 0.0189 _0'0383]

[] -0.00140.0158 -0.2223 0.1287 ",C = ,xlv
0.0189 -0.2223 4.6901 0.0699

-0.0383 0.1287 0.0699 9.3259

(E8)

{uor = {0.0386 -0.0252 0.0002 -0.0001} (Ell)

Note that the displacement amplitudes in The

directions of 1 and 3 are in prillimeters, whereas
the rotations in the directions of 2 and 4 are in
radians.

It is of interest to compare this to the contributions
of the individual modes, which can be easily
obtained by multiplying each eigenvector by the
corresponding modal displacement amplitude.
These are given below

{Uor = {0.0386 -0.0252 0.0001 -0.0001}

{Uor = {-O.l058 -0.1589 0.1448 0.0017}xIO'..•
(E12)

{"or: {-0.0228 - 0.0284 0.5792. 0.0068}x10'"

The generalized force vector is also found to be

{FY = p 4.8796 -19.3726 -0.983.8 0.3359} (E9)

The submatrix [.4] in Eq. (14) takes the form

JournalofEEA, VoL 22,2005

{Uor : p.0042 0.0034 -0.0038 0.2219}xl0'"

It is evident from Eqs. (Ell) and (E12) that the
contribution to the overall displacements or
rotations in the respective degrees of freedom
comes almost entirely from the first (fundamental)
mode. The remaining three modes play no
significant role at least in this example. Particularly
worth noting is the insignificant participation of the
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fourth mode despite the closeness of the
corresponding frequency' to the excitation
frequency. This observation would not be possible,
if the alternative direct solution procedure without
modal transf~rination was followed. Furthermore,
one could have detennined the response accurately
enough had the first mode only been employed.
This is a clear justification for the preference of the
presented solution procedure based on modal
analysis to the direct one.

The vector of equivalent peak static forces along
the defined degrees of freedom can also be
computed as follows:

{/'oY=[k]{uo}={2622361 -1810844 111.2680 L5066}

The first and third elements of the vector are forces
in kN, whereas the second and forth are moments
in kNm.

The peak base shear and overt'urning moment at the
base of the columns are finally -:omputed from
considerations of static equilibrium, which result in

VbO = (fsJI = 262.24 kN ;

Mbo = (/'o~ h +1/'01 = 26224 x2.5 - (-181.08) = 836·98kNm

These final results, which include the contributions
of all the natural modes, are the basis for the 'design
of the structure. It is important to note the
significant amplification of the base shear from 120
kN to 262.24 kN by well over 150% - a fact
attributable to the dynamic nature of the loading

des,Pite the inherent damping both in the
superstructure and in the soil.

CONCLUSION

In the foregoing, it has been shown that the coupled
differential equations of motion of non-classically
damped systems subjected to harmonic loads can
be transformed easily into a system of coupled
algebraic equations. The number of the algebraic
equations is double that of the number of degrees
of freedom. It has also been shown that the modal
transformation technique is superior to the direct
solution procedure if judiciously used.

The method presented leads to a closed form
solution and thus does .not demand any iterative
procedure, which would otherwise be the case for
excitations of more general and non-harmonic
nature. Furthermore, a technique of compiling the
damping matrix of systems exhibiting different
mechanisms of energy dissipation in different
regions has been presented.

With the intention of staying within the scope of
the work, the application of the proposed method is
illustrated using a relativelysirriple example, but to
a sufficient detail. The method has also
applications in more practical problems including
framed foundations providing support to heavy
rotary machines like turbo-generators that induce
harmonic loads and in slender structures subjected
to wind-induced v~rtex shedding, cases in which
the foundations interact with the underlying soil. A
detailed treatment of the applications of the method
to such practical cases is deferred to future works.
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