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ABSTRACT 
 
Based on an isotropic elastic continuum of 
thickness H overlying a rigid stratum, a 
generalized formulation for the classical single-
parameter Winkler's subgrade model is presented. 
In this formulation, all the normal components of 
the stress tensor are taken into consideration, 
whereas the shear stresses are intentionally 
dropped with the purpose of providing a useful 
perspective, with which Winkler's model and its 
associated coefficient of subgrade reaction can be 
viewed. The formulation takes into account the 
variation of the elasticity modulus with depth. It 
only demands specifying a relationship between the 
vertical and horizontal normal stresses. 
Accordingly, two such different assumptions are 
made to obtain two new Winkler-type subgrade 
models with the corresponding closed-form 
relations for the subgrade modulus. The models 
give consistently larger stiffness for the Winkler 
springs as compared to previously proposed 
similar continuum-based models that ignore the 
lateral stresses. It has also been pointed out that it 
is only if the shear stress components of the 
subgrade are taken into consideration that a multi-
parameter model evolves regardless of whether the 
lateral normal stresses are included. Finally, the 
effective stiffness per unit area of the multiple beds 
of springs of such a higher order model is exactly 
the same as the subgrade modulus of the 
corresponding single-parameter Winkler model 
presented in this work. 
 
Keywords: Heterogeneous subgrade, Reissner's 
simplified continuum, Shear interaction, Simplified 
continuum, Winkler model, Winkler-type models.  
 

INTRODUCTION 
 
The simplest representation of a foundation 
subgrade is in the form of the classical Winkler 
model, which replaces the subgrade by a 
mechanical analogy consisting of a single bed of 
closely spaced vertical springs acting 
independently of each other. Mathematically, 
Winkler's model translates into 

( ) ( )yxwkyxp s ,, 0= , in which p is the vertical 
contact pressure at an arbitrary point (x,y) in the 
foundation-soil interface area; w0 is the 
corresponding vertical deformation; and ks is a 
proportionality constant representing contact 
pressure per unit deformation - commonly referred 
to as the coefficient of subgrade reaction or simply 
as the subgrade modulus [1-7]. Thus, ks is the only 
quantity characterizing the subgrade material.  
 
Winkler's model has the well-known shortcoming 
of bringing about a vertical deformation of those 
springs alone that are located just under the loaded 
region. Because of this, the model entails a 
discontinuity of vertical deformation at the edges 
of the loaded area. Furthermore, the model implies 
that a point undergoes vertical deformation 
independently of other adjoining points [1, 3, 4, 5]. 
Both are consequences of the neglected vertical 
shear stresses that would have coupled the vertical 
deformations of neighboring points with each other 
so that continuity of displacement exists.  
 
This shortcoming can be overcome by 
appropriately accounting for the shear stress 
components of the subgrade. A number of attempts 
have been made in the past to incorporate the shear 
stresses following two different approaches. In the 
first approach, the subgrade is idealized as an 
elastic continuum of finite thickness, and certain 
simplifying assumptions are made to reduce the 
mathematical work involved [3, 4, 8, 9]. In the 
second approach, mechanical models are 
developed that involve different combinations of 
spring beds and shear elements [3, 7]. Both 
approaches can be judiciously synthesized for the 
purpose of solving practical problems, whereby the 
mechanical-model parameters are quantified in 
terms of the elastic parameters of the continuum 
[3, 9].  
 
However, mainly due to the simplicity of Winkler's 
model in practical applications and its long time 
familiarity among practical engineers, its usage has 
endured to this date. Many current commercial 
softwares continued incorporating the model as a 
major feature of their programs for the purpose of 
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analysis and design of beams and plates on elastic 
foundations. A number of both analytical and 
empirical relationships have been suggested in the 
past for estimating ks. As a pioneer, Terzaghi [10] 
identified the width of the foundation as the most 
important influencing factor of ks in addition to the 
elastic properties of the soil. Accordingly, he 
suggested empirical relations for converting ks  
values from field plate loading tests to ks values of 
actual foundations that decrease with increasing 
width. For long beams, Vesić [11] later proposed a 
formula that depends on the rigidity of the beam 
itself in addition to its width and the elastic 
properties of the subgrade material. Based on a 
subgrade idealized as a simplified elastic 
continuum of finite thickness, in which only the 
vertical normal stress components are taken into 
consideration, Horvath [5] recently derived closed 
form relations for ks for constant and varying 
elasticity modulus of the subgrade. Correlations 
with standard penetration blow counts were also 
suggested more recently [12].  
 
Recognizing the enduring usage of Winkler's 
model in wide ranging applications of geotechnical 
engineering, this article attempts to provide some 
insight into this model and its associated 
coefficient of subgrade reaction from the 
perspective of continuum modeling. In this 
technique, the subgrade is idealized as an isotropic 
elastic continuum of finite thickness H. 
Heterogeneity with respect to subgrade rigidity is 
taken into consideration by assuming a variable 
elasticity modulus with depth. In order to clearly 
understand the influence of the soil shear stress on 
the form of the resulting mathematical model, the 
shear components are first intentionally omitted 
with the normal stress components alone accounted 
for in the formulation. Open functions of depth are 
introduced to relate the horizontal and vertical 
normal stress components. It is shown that the 
resulting model is a single-parameter Winkler-type 

model, for which the coefficient of subgrade 
reaction can be evaluated from an analytical 
relation obtained in form of a definite integral. The 
choice of the functions relating the normal stresses 
is at the discretion of the user. Two such functions 
are employed in this work to come up with two 
correspondingly different sets of closed-form 
relations for the coefficient of subgrade reaction for 
constant as well as variable elasticity modulus. 
These are compared with similar relations 
proposed in the past.  
 
Finally, a brief account of ways of incorporating 
the shear stress components of the elastic subgrade 
is presented with the details being presented in the 
companion paper [9]. Here, it is pointed out that an 
additional assumption is needed regarding the 
variation of the vertical shear stress components 
with depth. It has been found that the resulting 
mathematical models are always second-order 
differential equations with constant coefficients 
regardless of the nature of this assumption. It is 
pointed out that a three-parameter mechanical 
model consisting of two beds of springs and a layer 
of shear element results also in a differential 
equation of similar form and order to that of the 
continuum. By taking advantage of this important 
analogy, it has been shown that the effective spring 
stiffness per unit area of the two beds of springs of 
the three-parameter mechanical model is nothing 
other than the coefficient of subgrade reaction of 
the single-parameter Winkler-type model 
established in the present work by excluding the 
shear stresses. 
 

A GENERALIZED FORMULATION OF 
WINKLER'S SUBGRADE MODULUS 

 
The subgrade is idealized as an isotropic elastic 
continuum of thickness H similar to Reissner’s 
simplified continuum [8] as shown in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  The subgrade idealized as an isotropic, heterogeneous elastic layer 
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The depth-wise heterogeneity is taken into account 
by assuming a variable elasticity modulus with 
depth. The Poisson ratio is assumed constant, 
because it is known that the problem is less 
sensitive to its variation. 
 
The primary aim is to study the influence of the 
normal stress components alone by intentionally 
excluding the shear effect. Thus, 
 
 0=== yzxzxy τττ  (1) 
 
With this assumption, the equilibrium equation for 
the vertical direction becomes 
 
 0, =zzσ  (2) 

 
where the coma sign represents a derivative with 
respect to the symbol that follows. 
 
Equation (2) implies that σz is constant with 
respect to depth. Applying the stress boundary 
condition at the surface and noting that 
compressive stresses are negative, it follows that 
 
 ( ) ( )yxpyxz ,, −=σ  (3) 
 
where, -p(x,y) is the vertical contact pressure at the 
surface.  
 
The lateral normal stresses, σx and σy, can be 
related to the vertical normal stress, σz, through 
appropriately selected functions, gx(z) and gy(z), 
respectively, so that  
 
 ( ) ( ) zyyzxx zgzg σσσσ == ;  (4) 
 
The generalized Hooke's law for the normal strain 
in the vertical direction is given by 
 

( ) ( )[ ]yxzz zE
w σσνσ +−=

1
,

 (5) 

 
where E(z) is the elasticity modulus that may 
generally vary with depth. Substituting Eqs. (3) and 
(4) in Eq. (5) and integrating, one obtains for the 
vertical displacement 
 

 ( ) ( ) ( )
( ) ( )∫ ++−= 11 ,,,, cyxfdz
zE
zgyxpzyxw  (6) 

 
where, 
 ( ) ( ) ( )[ ]zgzgzg yx +−= ν1  (7) 
 

The function f 1 in Eq. (6) is a function of x and y, 
and c1 is a constant of integration. Applying the 
zero-displacement boundary condition at the 
interface with the rigid base, these two unknowns 
are readily determined at once. Substituting the 
resulting expression back in Eq. (6) one obtains the 
vertical displacement function as 
 

( ) ( ) ( )
( )

( )
( ) 








−







= ∫∫

=

dz
zE
zgdz

zE
zgyxpzyxw

Hz

,,,   (8) 

 
The vertical displacement, w0, of the surface in 
particular is obtained by evaluating Eq. (8) at z=0, 
so that  
 

( ) ( ) ( )
( ) ( ) ( )

( )dz
zE
zgyxpdz

zE
zgyxpyxw

HHz

z
∫∫ =








=

=

= 00
0 ,,,    (9) 

 
This equation is the relationship sought between 
the vertical surface displacement and the vertical 
surface pressure that can be written as 
 
 ( ) ( )yxwkyxp s ,, 0=  (10) 
 
where, ks is the coefficient of subgrade reaction 
given by 
 
 

( )
( )∫

= Hs

dz
zE
zg

k

0

1    (11a) 

 
It is evident from this result that it is always a 
Winkler-type single-parameter model that evolves 
for an elastic subgrade as far as the normal stress 
components alone are taken into account. Eq. (11a) 
provides a generalized analytical formulation for 
quantifying the coefficient of subgrade reaction, 
which depends only on the elastic properties of the 
subgrade and, implicitly through g(z) of Eq. (7), on 
the size and shape of the loaded region on the 
surface as was correctly pointed out by Terzaghi 
[10].  
 
If the lateral normal stress components are 
neglected in addition to the vertical shear stresses, 
g(z) in Eq. (7) reduces to unity and Eq. (11a) takes 
the simplified form of 
 
 

( )∫
= Hs

dz
zE

k

0

1
1   (11b) 

 
It will be shown in a later section that Eq. (11b) is a 
unified formulation of the closed-form relations 
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proposed by Horvath [5] for estimating the 
subgrade modulus. 
 
According to Eq. (11a), what it all demands to 
estimate the subgrade modulus is to select an 
appropriate function g(z) that relates the vertical 
and horizontal normal stresses with each other and 
to employ a suitable function E(z) for the variation 
of the elasticity modulus with depth if there is the 
need to do so.  The following sections deal with 
these two functions. 
 
THE ELASTICITY MODULUS FUNCTION, E(Z) 
 
The depth-wise variation of E(z) can be taken into 
consideration in one of two different forms: a 
power function or an exponential function of z. The 
most commonly employed option is the power 
function of z given by 
 
 ( ) βBzzE =  (12a) 
 
where β is a positive dimensionless constant 
known as the non-homogeneity parameter, and B is 
a dimension-bound coefficient [6, 13, 14]. For 
β = 0, Eq. (12a) represents a homogenous elastic 
layer with a constant elasticity modulus, B=E0. In 
this case, the coefficient B takes the dimension of a 
stress. For β = 1, Eq. (12a) represents a 
heterogeneous soil layer with a linearly varying 
elasticity modulus. The coefficient B takes in this 
case the dimensions of the coefficient of subgrade 
reaction. For other values of β, B assumes 
correspondingly different dimensions. Soils, the 
Young's moduli of which vary in accordance with 
Eq. (12a), are often referred to as Gibson soils 
[6, 14]. 
 
For the general case of a heterogeneous layer 
(β ≠ 0), Eq. (12a) gives a zero value for the 
elasticity modulus at the surface (z = 0). This 
condition poses some difficulties in the evaluation 
of the integral in Eq. (11a) at z = 0 when β = 1. A 
more suitable variant for such a case is the form  
 
 ( ) βBzEzE += 0   (12b) 
 
This alternative formulation enables the assignment 
of a non-zero elasticity modulus of E = E0 at z = 0. 
In both Eqs. (12a) and (12b), it is common to use 
β = 1 for clayey soils and β = 1/2 for granular soils 
[13]. 
 
The other form of variation of the elasticity 
modulus that found some usage in the past is the 
exponential function given by [13] 

 ( ) zeEzE λ
0=  (13) 

 
where E0 is the elasticity modulus at the surface 
(for z=0) and λ is a non-negative quantity having 
the dimension of m-1. Appropriate values of λ can 
be easily obtained by matching plots of Eqs. (13) 
and   (12b). For reasons of mathematical 
convenience, only the relations in Eqs. (12b) and 
(13) are further used in this work.  
 
Since the other important function in the estimation 
of ks using Eq. (11a) is g(z), two alternative forms 
of this function that lead to correspondingly two 
different Winkler-type models are discussed next. 
 

WINKLER-TYPE CONTINUUM MODEL 
VARIANT I 

 
In the development of this particular model, the 
functions gx and gy in Eq. (4) are assumed constant 
so that 
 
 zyyzxx kk σσσσ == ;  (14) 
 
where kx and ky are constants that are presumed to 
be estimated from knowledge of lateral earth 
pressure theories. Substituting Eq. (14) in Eq. (7) 
and this in turn in Eq. (11a), one obtains  
 
 

( )∫
= Hs

zE
dz

k

0

1

α

 (15) 

 
where α is a constant given by 
 
 ( )yx kk +−= να 1  (16) 
 
If, as a special case, the assumption is made that 

0kkk yx ==  (the coefficient of lateral pressure for 
at rest condition) and it is noted that this coefficient 
can be expressed as ( )νν −= 10k , then the factor α 
in Eq. (16) becomes dependent only on the Poisson 
and takes the form 
 

 
ν
ννα

−
−−

=
1

21 2
 (17) 

 
In plane-strain problems, the assumption of 

0kk x =  alone is sufficient, because it can be easily 
shown in this case that 

0kkk yx == . It may thus 

be expected that Eq. (17) can give reasonable 
results for strip foundations and for rectangular 
foundations with large aspect ratios.  
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Stratum with Constant E 
 
The case of a homogenous stratum corresponds to 
B = 0 in Eq. (12b) and λ = 0 in Eq. (13), both of 
which give a constant modulus of elasticity, 
E = E0. Evaluation of the integral in Eq. (15) then 
yields  
  
 

H
E

ks α
0=   (18) 

 
Stratum with Variable E 
 
Substituting Eqs. (12b) and (13) in Eq. (15) and 
performing the respective integrals, one obtains for 
the heterogeneous layer, depending on the type of 
E(z) used, 
 
For E(z)=E0+Bzβ: 
 

  
















=





















 +
−

=








 +

=

2
1;

ln2

1;
ln

0

0
0

2

0

0

β

α

β
α

E
HBE

EHB

B

E
BHE
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ks

 (19) 

 
For E(z)=E0eλz: 
 

 
( )Hs e

E
k λα

λ
−−

=
1

0  (20) 

 
WINKLER-TYPE CONTINUUM MODEL 

VARIANT II 
 
This model is motivated by observations of plots of 
the depth-wise variation of the horizontal-to-
vertical normal stress ratio underneath uniformly 
loaded circular and square regions on the surface of 
both a layered and non-layered elastic half space as 
presented in Fig. 2 [4,9, 15].  

Accordingly, this ratio can be represented by a 
decaying exponential function of z as shown in the 
figure for a typical vertical plane through the 
loaded region. In this figure, nz and nr represent 
the normal stresses in the vertical and radial 
directions, respectively; b is the radius of the 
loaded circular region; s is the radial coordinate 
according to the cylindrical coordinate system, the 
origin of which is located at the center of the circle. 
 
Based on observations of the trend in Fig. 2, the 
functions gx(z) and gy(z) are taken as 
 
 ( ) ( ) z

yy
z

xx erzgerzg ζζ −− == ;   (21) 
 
where, the constants rx and ry, and the dimension-
bound ζ can be established from best-fitting curves 
for the plots of the horizontal-to-vertical normal 
stress ratio. These constants take the values 
rx = ry = 0.8 and ζ = 3.96/H for a typical vertical 
plane and are indicated in Fig. 2 [9]. 
 
With Eq. (21) substituted in Eq. (7), this further in 
Eq. (11a), and noting that r = rx+ry one obtains  
 
 
 

( )
( )∫
−−

= H zs

zE
dzre

k

0

1
1

ζν
 (22) 

 
Stratum with Constant E 
 
For a homogenous soil layer with a constant 
E =E0, evaluation of the integral in Eq. (22) leads 
to 
 
 

( )H
s

e
H
r

HEk
ζ

ζ
ν −−−

=
11

0
 (23) 
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Figure 2 Plots of typical vertical and horizontal stresses and their ratios with depth for a circular region 
subjected to a uniformly distributed load together with the best-fitting curve for σr/σz [9] 

Stratum with Variable E 
 
For the general case of a heterogeneous stratum, 
the use of the exponential function of Eq. (13) for 
E(z) is much more convenient to evaluate the 
integral of Eq. (22) than using Eq. (12b). This 
yields 
 

 

( ) ( )
( )[ ]HH

s

ere

E
k

λζλ

λζ
λν

λ
+−− −

+
−−

=
11

0  (24) 

 
It is also possible to use Eq. (12b) for the variation 
of E. However, the evaluation of the integral in 
Eq. (22) leads to complicated expressions for the 
coefficient of subgrade reaction. For example, for a 
linearly varying E (i.e β = 1), ks takes the form  
 

( )
( )
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 −
−

+
−
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nn
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nn
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s

E
B
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BerB

E
BHE

Bk

ζζ
ν ζ

 (25) 
 

The expression for ks becomes even much more 
complicated in the case of β = 1/2. Obviously, 
Eq. (24) is much simpler to use than Eq. (25) and 
demands only selecting appropriate values of λ that 
give variations of E(z) sufficiently closely 
matching with the power function, when β takes 
the respective values of 1 and1/2.  
 
The foregoing two sections presented two different 
Winkler-type models together with the 
corresponding closed-form relations for ks based 
on two different forms of assumed lateral-to-
vertical normal stress ratio distribution with depth. 
It is important to note, however, that the approach 
enables to develop as many such models as the 
number of different assumptions made.  
 
COMPARISON WITH SIMILAR PREVIOUS 

STUDIES 
 
A similar study by Horvath [5] employed the same 
simplified-continuum idealization of the subgrade, 
but with only σz taken into account and all other 
stress components neglected. The cases of both 
constant and variable E were considered. The 
power function of z in Eq. (12b) with β = 1 and 
β = 1/2 was used to account for the variation of E. 
The subgrade models obtained were all Winkler-
type similar to Eq. (10) and given by 

For Constant E (E = E0): 
 
 HEks 0=  (26) 
 
For Variable E (E = E0+Bzβ): 
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E
HBEEHB
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BHE
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Equations (26) and (27) can be obtained directly 
from Eq. (11b) or be retrieved from Eqs. (18) and 
(19), respectively, of the models presented in this 
work, when α = 1 - a case that corresponds to 
kx = ky = 0 or to a condition of zero lateral normal 
stresses. It is to be noted that Eqs. (18) and (19) are 
derived using the same power function of z of 
Eq. (12b).  
 
If Eqs. (18) and (19) are now normalized with 
respect to the respective moduli of Eqs. (26) 
and (27), one obtains in both cases 1/α - a 
parameter dependant on the soil Poisson ratio. 
Therefore, the model presented in this work based 
on the power function of z for E gives always a 
Winkler-type subgrade model with a spring 
stiffness that is 1/α times the stiffness of the 
corresponding model of Horvath irrespective of 
how E varies with depth.  The plot of 1/α against ν 
is provided in Fig. 3 together with that of Horvath 
(1/α = 1), where ( )νν −= 10k  is used for both kx 
and ky. This plot is referred to as New Variant I in 
the Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 



Winkler's Single-Parameter Subgrade Model from the Perspective of… 

Journal of EEA, Vol. 26, 2009 

17 

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6
Poisson ratio

ks
/(E

o/
H

)
Horvath
New Variant I
New Variant II
Vesic (H=B)
Vesic (H=2B)
Vlasov

 
 
 
Figure 3 shows that the difference between the 
spring stiffness of the Winkler-type model New 
Variant I and the corresponding model of Horvath 
increases with increasing Poisson ratio for both the 
homogenous and heterogeneous cases, but 
becomes indeterminate at ν = 0.5 - the case of an 
incompressible fluid. The indeterminacy is 
attributed to the nature of the definition of k0  
employed, which is expressed in terms of ν.  
 
Equation (26) of Horvath can also be obtained 
from Eq. (23) by substituting r = 0 - a case that 
corresponds once again to zero lateral normal 
stresses. However, Eq. (27) cannot be retrieved 
from Eq. (24) by substituting r = 0, because the 
exponential function used to represent the variation 
of E in this case is different from the power 
function used by Horvath [5].  
 
Similarly, Eq. (23) can be normalized with respect 
to Eq. (26) to get 
 
 

( )H

s

e
H
rHE

k
ζ

ζ
ν −−−

=
11

1

0

 (28a) 

 
Using the values of r and ζ suggested in Eq. (21), 
this relation simplifies to 
 
 

ν4.01
1

0 −
=

HE
ks    (28b) 

 
The plot of this relation is also given in Fig. 3 as 
New Variant II, which shows that this second 
model presented based on a decaying exponential 
function for the lateral-to-vertical normal stress 
ratio also gives consistently larger spring stiffness 
that increases with increasing ν, but not as large as 
in the first model. 
 
 

 
 
Vesić [11] proposed an analytical relation for 
computing the modulus of the homogenous, elastic 
subgrade in terms of the rigidity of the foundation 
element, its size, and the elastic subgrade 
properties. This relation, which is widely used in 
practice, is given by 
 

 
( ) ( )2

0
2

0
12

4
0

11
65.0

νν −
≈

−
=

B
E

B
E

IE
BEk

ff
s

 (29) 

 
In this equation, EfIf is the foundation rigidity. For 
relatively large-sized foundations like rafts, the 
value of the 12th root multiplied by 0.65 is close 
to 1, so that the simplified expression on the right 
hand side is commonly employed [18]. The plots of 
this expression normalized with respect to E0/H are 
also given in Fig. 3 for the cases of H = B and 
H = 2B, the latter case being applicable for a thick 
stratum or a half space. It can be seen from Fig.3 
that the plot for the case of H = B almost coincides 
with that of New Variant II, whereas the plot for 
the case of H = 2B is double that of the case of 
H = B. Vesić's relation gives the highest estimate 
for the subgrade modulus for thick formations of 
most soils (ν≤0.42), whereas New Variant I gives 
the highest values for soft cohesive soils (ν>0.42). 
Furthermore, Vesić's model gives at least double 
the magnitude of stiffness provided by the new 
Variant II model of this author for thick strata or a 
half space. This implies that Vesić's model 
underestimates deflections, especially for 
foundations on thick strata. 
 
Vlasov and Leontiev presented [1, 16] a subgrade 
model based on the continuum approach, in which 
they introduced displacement constraints to 
simplify the continuum. Their model takes into 
account the shear interaction missing in the 
Winkler model. In the case of an assumed linear 
variation of the vertical displacement w(x,z) with 
respect to depth that is deemed reasonable, 
according to the authors for relatively shallow 

Figure 3   Plots of the normalized subgrade modulus according to different models 
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subgrade, their model results in a subgrade 
modulus given by 
 
 

( )432
0

21 ννν −+−
=

H
Eks

 (30) 

 
The normalized plot of Eq. (30) is also included in 
Fig. 3. The plot shows ks increasing with 
increasing Poisson ratio, though at a very low rate. 
For all practical purposes, Vlasov's subgrade 
modulus is the same as that of Horvath, whereas 
values of Vesić's subgrade modulus for H = B are 
close to those of New Variant II. The largest 
estimates of ks are obtained from Vesić's model for 
H = 2B and from the New Variant I. These two 
models interchange positions at about ν =0.42 
 
Following Schmertmann's semi-analytical 
approach [15,17] for estimating immediate (elastic) 
settlement, the thickness of the elastic subgrade 
stratum can be expressed as BIH z= , where B is 
the width of the loaded area, and Iz is an influence 
factor dependant on the relative width of the 
foundation with respect to the thickness of the 
subgrade (For a half space Iz = 2 is taken). Using 
this approach, which was also employed by 
Horvath [5], the various relations for ks presented 
in the preceding sections can be expressed in terms 
of the foundation width, B, and plotted. Such plots 
for two representative types of thick subgrade 
material with Ik = 2 are given in Fig. 4.  
 
Figure 4(a) is for a medium dense coarse sand, for 
which ν = 0.25 and E = 40MPa are taken. Figure 
4(b) is for a medium stiff clay with ν = 0.45 and 
E = 50MPa. In the case of the medium dense sand 
(Fig. 4(a)), Horvath's model, the New Variant II, 
and Vlasov's model give practically identical 
values of ks for all sizes of the plate. New Variant I 
gives a bit larger values of ks in comparison, but 
the difference dwindles fast with increasing width 
of the plate. In contrast, Vesić's subgrade modulus 
values are consistently larger than those given by 
the other three models. 
 
In the case of the medium stiff clay (Fig. 4(b)), 
Horvath's model, the New Variant II, and Vlasov's 
model give ks values, which are close to each other 
for all sizes of the plates in the case of the medium 
dense sand. New Variant I gives the largest of ks  
values for all foundation widths, with the 
difference from the rest increasing with decreasing 
plate width. Vesić's subgrade modulus fall in this 
case between values of New Variant I and II. 
 

As could be observed from Eqs. (26) and (27) and 
Figs. 3 and 4, Horvath's model give the least values 
of subgrade modulus that are independent of 
Poisson ratio. This is a consequence of the 
omission of the lateral normal stresses in his highly 
simplified model. 
 
Based on the above comparison, it can be 
concluded that Horvath's subgrade moduli form the 
lower bound for the subgrade modulus values that 
can be estimated using different assumed functions 
of g(z) in Eq. (7), and Vlasov's model gives only 
slightly higher values of ks, whereas Vesić's model 
gives     consistently    higher    values   of  ks   only  
exceeded by the New Variant I model for soils with 
ν>0.42. 
 
INTERPRETATION USING A CLUSTER OF 

CONTIGUOUS SOIL COLUMNS 
 
Horvath's simplified subgrade [5] can be visualized 
as a medium made up of a cluster of contiguous 
short columns (no buckling) of each with a height 
of H and a cross sectional area of A that do not 
interact with each other at all and are behaving in a 
uniaxial state of strain. This can be easily verified 
as follows for both the constant and the variable E. 
 
In the case of a constant E, it is evident that the 
stiffness of such a uniaxial member is given by 
K = EA/H (Figs. 5(a) and 5(b)). On the other hand, 
the stiffness of the substitute spring responsible for 
the tributary area A in a Winkler's foundation is 
given by K = ksA. Equating the two expressions 
then yields ks = E/H, which is identical to 
Horvath's result of Eq. (26) for the case of constant 
E. 
 
In the case of a variable E, the following relation is 
obtained using the uniaxial Hooke's law for the 
vertical deformation of a typical soil column at the 
location (x, y) (Fig. 6(b)): 
 

( ) 22 ,
)(

),,( cyxfdz
zE

zyxw z ++= ∫
σ   (31) 

 
where, f 2 and c2 are determined from the boundary 
conditions. 
 
With βBzEzE += 0)(  substituted in Eq. (31) for the 
variation of E, noting that σz =-p(x,y) is constant 
with respect to depth, and applying the boundary 
conditions at the two ends of the soil column, 
Eq. (31) gives  expressions for ks identical  to 
Eq. (27)  for β = 1 and 1/2. This shows that 
Horvath's subgrade can be idealized as a  cluster  of 
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contiguous short soil columns that do not interact 
with each other in any manner. 
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       Figure 4 Plots of subgrade modulus against foundation width for: (a) a medium dense, coarse sand   
 (ν = 0.25 and E = 40MPa); (b) a medium stiff clay (ν = 0.45 and E = 50MPa) 
 

 
 
 
 
 
 
 
In contrast to this, the subgrade represented by the 
models presented in this work is equivalent to the 
same cluster of contiguous soil columns, but with 
interaction through the lateral normal stresses as 
shown in Fig. 5(c). The mathematical proof goes 
analogously, the main difference being the use of 
the generalized three-dimensional Hooke's law 
because of the inclusion of the lateral normal 
stresses in these models. Thus, 
 

( )[ ]
33)(

),,( cfdz
zE

zyxw yxz ++
+−

= ∫
σσνσ  (32) 

 
in which, f 3 and c3 are dependant on the boundary 
conditions. 
 
The integral in Eq. (32) is identical to Eq. (6) and 
its evaluation leads to the respective expressions 
for ks presented in the preceding sections for the 
different cases considered. Due to the propping-up 
effect of the lateral normal stresses, the present 
model gives consistently stiffer springs. 
 

One can finally draw the important conclusion that 
the use of any type of relationship between the 
vertical and the horizontal normal stresses and  any 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
form of distribution of E(z) will always result in a 
Winkler-type subgrade as far as the shear 
components of the stress tensor are not taken into 
account. 
 

THE MISSING SHEAR INTERACTION 
 
A more complete representation of the interaction 
among the soil columns or the Winkler springs can 
be achieved, only if the shear stress components in 
the stress tensor are taken into account in the 
formulation of the subgrade model.  This can be 
achieved with relative ease, if simplifying, but 
reasonable, assumptions are made with regard to 
the depth-wise variation of the vertical shear stress 
components τxz and τyz in addition to the 
assumptions already made with respect to the 
lateral normal stresses. Such comprehensive 
considerations result in more complex 
mathematical models of higher order for the 
subgrade. Two such models have been proposed by 
the author in the accompanying paper that are 

p(x,y) 
x 

z H 

p(x,y) 

σx+∆σx 
σx 

  Figure 5 (a) The elastic subgrade idealized as a cluster of closely spaced soil columns; (b) a typical soil 
column without lateral normal stresses; (c) a typical soil column propped up by lateral normal 
stresses 
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counterparts of the two Winkler-type models 
presented in this paper. Both models are similar 
second order partial differential equations with 
constant coefficients given by 
 
( ) ( ) ( ) ( )yxwcyxwcyxpcyxp ,,,, 0

2
302

2
1 ∇−=∇−    (33a) 

 
where, ∇ is the Laplace operator. The constant 
coefficients c1 to c3 depend on the soil properties 
and are different for the two models:  
 
Counterpart Model to Winkler-Type Variant I: 
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Counterpart Model to Winkler-Type Variant II: 
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H
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In Eqs. (33b) and (33c), E and G are the Young's 
modulus and the shear modulus of the homogenous 
subgrade, respectively, and H is the layer 
thickness. The coefficients a1, a2, and a3 are 
dependent on the Poisson ratio of the soil, and α is 
the same as defined in Eq. (16). 
 
Equation (33a) is similar in form and order to the 
three-parameter mechanical model proposed by 
Kerr [7]. This mechanical model consists of two 
beds of springs, one overlying the other, with 
corresponding subgrade moduli of ku and kl, 
separated by a shear layer of parameter gk. Its 
governing differential equation is given by 
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 (34) 

 
Through comparison of coefficients in Eqs. (33a) 
and (34), one can easily express each of the three 
parameters of the Kerr mechanical model in terms 
of the known elastic soil properties and the layer 
thickness for both continuum-based models 
presented in Eq. (33). Of special interest here is the 
effective subgrade modulus, ke. Since the two 
spring beds in Kerr model are arranged in series, 
the effective subgrade modulus can be expressed as 
 

 
lu

lu
e kk

kkk
+

=  (35) 

 

Inserting the relations for ku and kl in Eq. (35), one 
can easily obtain the following expressions for ke  
for the two continuum-based models under 
consideration that take into account the shear 
interaction [9]: 
Counterpart Model to Winkler-Type Variant I: 
 

 
H
Eke α

=  (36) 

 
Counterpart Model to Winkler-Type Variant II: 
 

 
( )H

Eke ν4.01−
=  (37) 

 
Equations (36) and (37) for the effective subgrade 
modulus of the three-parameter Kerr mechanical 
model are identical to Eqs. (18) and (23), 
respectively, of the single-parameter Winkler's 
mechanical model. It is important to note that a 
complete subgrade model should take into account 
the shear interaction, which becomes more 
significant with increasing relative rigidity of the 
soil with respect to that of the foundation.  
 

CONCLUSIONS 
 
The presented work shows that a Winkler-type 
model will always evolve for an elastic subgrade as 
far as the shear components of the stress tensor are 
omitted regardless of whether all or part of the 
normal stress components are taken into 
consideration. A generalized analytical formulation 
in form of a definite integral for evaluating the 
coefficient of subgrade reaction is provided by 
accounting for all normal stresses. The variation 
with depth of the elasticity modulus is taken into 
consideration. It is only required too make a 
reasonable assumption on the function g(z) relating 
the normal stresses, which is at the discretion of the 
user.  With the introduction of two such functions, 
the paper provided closed-form relations for 
estimating the subgrade reaction for both constant 
and variable elasticity modulus.  
 
A comparison with previously proposed simplified 
models shows some notable differences in the 
coefficient of subgrade reaction that generally 
decrease with decreasing Poisson ratio of the 
subgrade material and with increasing width of the 
foundation.  
 
With the introduction of H = IzB in the expressions 
derived for ks, it is possible to calibrate the 
Winkler-type models so that they give results that 
are in good agreement with finite-element based 
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models by conducting a numerical study. Such a 
work has been completed recently and suggested 
the use of a calibrating factor Iz = 2.8 to 3 for 
beams on elastic foundations. Similar studies for 
plates are underway. 
The work has also shown that the effective spring 
stiffness per unit area of higher order models 
remains the same as the subgrade modulus of the 
single-parameter Winkler's model as far as the way 
the normal stresses are considered remains the 
same regardless of the subgrade shear stresses.  
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