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ABSTRACT 

 
Computationally-efficient analytical procedure that 
provides high-quality analysis results for 
two-dimensional skeletal structure with segmented 
(stepped) and linearly-tapered non-prismatic 
flexural members has been developed based on the 
stiffness method of structural analysis. A computer 
program coded in FORTRAN 90 has been 
developed to facilitate the computational 
procedure. Concentrated and uniformly-distributed 
loads have been taken into consideration in the 
development of the computational procedure. The 
stiffness coefficients have been formulated 
employing both closed-form and numerical 
techniques. High quality computational procedures 
have been established to handle closed-form 
analytical solutions that have been observed to 
produce results that are close to theoretical values 
and that generally surpass those from 
commercially available software products.  
 
A numerical example has been presented to 
demonstrate the accuracy of the proposed 
computational procedure and related computer 
routines. The accuracy of the proposed analysis 
technique has been verified by comparing the 
results with theoretical results and those obtained 
using a commercial structural analysis software 
system. 
 
Keywords: Computer-oriented analysis, Linearly-
tappered cross-sections, Step-wise segmented 
cross-sections, Rigid frames, Computational 
efficiency, High-quality computations. 
 

INTRODUCTION 
 
Beams, columns and other flexural structural 
members of large-span systems, such as industrial 
facilities, assembly halls, aircraft maintenance 
hangars and bridges call for the use of relatively 
deeper cross-sections in order to provide effective 
resistance to the effects of loads and to keep 
deflections and other structural response quantities 
within acceptable limits. Efficient and economical 
response to such demands can be met by using 
non-prismatic members that may have segmented 
or tapered cross sections or combinations of both 

types. The use of non-prismatic members in civil 
engineering structures usually results in reduced 
structural self-weight thereby alleviating the need 
to provide undesirably large cross sections that 
would have otherwise resulted in heavy and 
uneconomical structures in addition to loss of head-
rooms or hydraulic clearances, among others.  
 
The shapes of cross-sections along the respective 
length of members significantly influence the 
analysis of structural systems that are composed of 
non-prismatic members, among others. This work 
explores the concept behind analysis methods and 
techniques of structures with non-prismatic 
members with the view of providing design 
engineers with a tool for solving such structural 
systems and, thus, to come up with safe, efficient 
and economical designs. 
 

STEPPED- AND LINEAR-HAUNCH NON-
PRISMATIC MEMBERS 

 
There are a number of non-prismatic shape types 
and members that are employed in various 
structural engineering applications. In view of the 
ease with which they can be constructed, the most 
frequent types are those with stepped haunches and 
those with linearly-varying haunches as shown in 
Fig. 1. 

Depending on the length of the left and right 
haunches – designated l1 and l2, respectively – one 
may get various forms of structural elements 
employing different haunch topologies as shown in 
Table 1. 

Type 1 - Stepped member 

Type 2 - Tapered-haunch member 

  

l1 l2 

l1 l2 

L 

Figure 1  Non-prismatic members 
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Table 1: Types of non-prismatic member 
topologies (for notations, refer to Fig. 1) 

 
Type 1:  Stepped  
l1 , l2           Shape 
l1 ≠ 0. 
l2 ≠ 0, L-l1- l2 > 0  

l1 = 0 
l2 ≠ 0, l2 < L  

l1 ≠ 0 
l2 = 0, α < L 

 

l1 = 0 
l2 = 0  

 
 

Type 2:  Linearly tapered 
l1 , l2 Shape 
l1 ≠ 0 
l2 ≠ 0, L- l1- l2 > 0 

 

l1 = 0 
l2 ≠ 0, l2 < L 

 
l1 ≠ 0 
l2 = 0, l1 < L 

 

l1 = 0 
l2 = L 

 
l1 = L 
l2 = 0   

 
L- l1- l2 = 0 
l1 ≠ 0, l2 ≠ 0 

 
 
 

ANALYSIS OF STRUCTURES WITH NON-
PRISMATIC MEMEBERS 

 
In implementing the stiffness method of structural 
analysis [1], member stiffness terms and matrices 
and, subsequently, the structural stiffness matrices, 
play a central role in the formulation of equilibrium 
equations. Member-end actions and, subsequently, 
the structural nodal-load vectors, are the other 
components that enter into the equilibrium 
equations in the solution process. Both the 
structural stiffness matrix and the corresponding 
load vectors are influenced by the cross-sectional 
geometries of the non-prismatic members 

contained in the structural system. Accordingly, 
subsequent sections of this paper present the 
formulation of both stiffness matrices and load 
vectors as related to structures with non-prismatic 
members of both stepped- and tapered-haunch 
types. 
 
Member stiffness matrix in local coordinates 
 
Forces and deformations in structures are related to 
one another by means of stiffness influence 
coefficients.  
 
Figure 2 shows a frame element, Member i, that is 
fully restrained at both ends, which are denoted as 
ends j and k.  Member-oriented axes are designated 
by xm, ym, zm. The xm axis is in the direction of the 
member and is positive in the sense from j to k 
while the orientations of the other axes can be 
established using the right-hand rule as shown in 
Fig. 2.  

   
 
 
The various member stiffness terms for the 
restrained member are also indicated in Fig. 2. 
They consist of actions exerted on the member by 
the restraints when unit displacements (translations 
or rotations) are imposed at each end of the 
member and are assumed to be positive in the 
xm,   ym,   zm directions. Thus, the arrows in Fig. 2 
indicate the positive senses of the three translations 
and rotations at each end of the member; the single 
headed arrows denote translations while the 
double-headed arrows represent rotations.  
 
The stiffness matrix in the member coordinate for 
any plane-frame member may be designated by km  
and can be presented as follows [2]. 
 
 
 
 
 

4 5 

6 

xm  
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1 
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y 
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 Figure 2  Spatial frame element, local and global  
coordinates 
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where  each  of  the  stiffness  terms is given by  the 
 following expressions: 
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In Eqs. (1), Ax and Iz.x represent the cross-sectional 
area and moment of inertia, respectively, of the 
member under consideration and they are 
expressed as a function of the variable cross-
sectional dimensions of the non-prismatic section 
at the point of interest along the member axis xm. 
 
The expression given by Eq. (1) are perfectly 
general and may be used for any cross section as 
long as  expressions for the moment of inertia Iz.x  
and cross-sectional area Ax can be explicitly 
established and where the integral equation can be 
evaluated in closed analytical format (see 
Annex A). 
 
The integral values that one needs for evaluating 
the stiffness terms are the following: 
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   (2 cont'd)                                                                            
 
Member stiffness terms and, subsequently, the 
member stiffness matrix can then be determined 
easily once the above integrals are evaluated. 
Details of evaluation procedure for these 
expressions are given in Annex A. 
 
The element stiffness matrix is now ready to enter 
the assembly process to form the structural stiffness 
matrix as will be discussed in subsequent sections. 
 
Member fixed-end equivalent actions in local 
coordinates 
 
Structural elements are usually subjected to various 
kinds of loads including generalized forces and 
displacements both in terms of distribution and 

(1b) 
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dL d1L 
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x ≤ dL x1 ≤ d1
 

h1 
h3 

h2 

h4 
h2 

h2 
• 

Mj 

Mk 

dx dx 

P 

direction. In the formulation of analysis equations 
of structural elements of the bending type as in the 
case of plane frames, the effect of loads are taken 
care of by converting all span loads into equivalent 
joint loads that may consist of direct forces and 
flexural moments. The latter will then be 
assembled into nodal load vectors with reference to 
the member axis for an eventual expression in 
structural coordinates. Before formulating the 
nodal load vectors, however, one needs to find 
fixed-end actions when such generalized set of 
span loads are applied to different types of non-
prismatic members. 
 
This paper concentrates on such loads of most 
common types for the setup of analysis equations; 
these are concentrated and distributed loads; in the 
latter case, both uniformly distributed and other 
types will be considered.  Detailed formulation 
with reference to other loading types may be found 
elsewhere [2]. 
 
Concentrated loads 
 
The member shown in Fig. 3 has variable flexural 
rigidity along its length while its two ends are fixed 
and it is subjected to one concentrated load as 
shown in the figure. The case of multiple 
concentrated loads will not introduce any difficulty 
as they will be taken care of by the superposition 
principle of elastic analysis. 
 
When a beam is fixed at both ends, the slopes of 
the tangents to the elastic curve at the ends equal to 
zero and, according to conjugate beam 
principles [3], they may be expressed as the end 
reactions of a simply supported beam loaded with 
M/EI diagram. 

While fixed-end moments can be determined in this 
manner, the limit of various parts of the integrals 
will, however, depend upon position of the load; 
that is, whether it is located within one region of 
the haunches or in the intervening straight part of 
the member.  Figure 3 shows the moment diagram 
for a fixed end beam with a concentrated load P, 
placed at a distance dL from support j and d1L from 
support k. 
 
In Fig. 3, the following parameters have been used 
to designate various ordinates in the moment 
diagram: 
 

14132
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 Figure 3  Bending moment diagram under a concentrated load 
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Similarly, the reaction or slope at j of M/EI 
diagram should satisfy: 
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We have seen before the first two terms of Eqs. (3) 
and their evaluations.  The third and fourth terms 
must be integrated in parts depending upon the 
location of the load in reference to the haunches. 
 
Therefore, the fixed end moments at the two ends 
become: 
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These integrals a1, a2, b1, b2, e1, e2, f1, and f2 must 
be carried out in parts depending up on the location 
of the load.  
 
Uniformly- and variably-distributed loads 
 
Other common loading types are the uniformly 
distributed load acting fully or partially on the 
member and to a lesser extent variably distributed 
loads either over the entire member or on part of it.  
 
The derivations provided earlier for concentrated 
loads can easily be extended to distributed loads 
either making use of closed-form analytical 

solutions or by numerical integration techniques 
[4]. 
 
Thus, for example, for a member subjected to 
uniformly distributed direct load across its entire 
length, the fixed-end moments will become [2]: 
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(5b) 
 
Fixed-end moments for general forms of loading 
can be obtained in a similar manner [2]. 
 
Once the fixed end moments are determined, direct 
reactions along and perpendicular to the member 
axis, can be easily determined from conditions of 
static equilibrium.  
 
We are now ready to establish the vector of 
member-end actions in local coordinates. Thus, 
member end actions Am as shown in Fig. 1 can be 
established as follows: 
 
  { }T

m6m5m4m3m2m1m AAAAAA=A  (6)  
 
where Am1 and Am2 are forces in the xM and ym  
directions (axial and shear), respectively, and Am3  
is the flexural moment in the zm sense, all at the j 
end. Similarly, Am4, Am5 are Am6 are the 
corresponding values at the k end of the member. 
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Analysis Procedure  
 
The analysis procedure for plane frames with 
non-prismatic members is identical to that of its 
counterparts with prismatic members and, hence, 
will not introduce any new procedure at structural 
level. Thus, the basic equation for relating actions 
and displacement at joints is  
 
 AJ = KJ D J   (7) 
 
The matrix KJ can be identified as the joint 
stiffness matrix relating the action AJ to the 
displacement D J. 
 
The member stiffness matrices and the member end 
actions, both transformed into structural coordinate 
as presented in Annex B, will be assembled to form 
structural joint stiffness matrix and the structural 
nodal load vector, respectively, following which 
the various structural response quantities are 
determined based on the procedures of matrix 
structural analysis [5]. 
 

COMPUTER PROGRAM LOGIC 
 
A computer program for the analysis of two- 
dimensional plane frame structures with non-
prismatic members of the types shown in Fig. 1 and 
for a wide variety of external loads has been 
developed in FORTRAN 90 and tested [6]. The 
significant differences for prismatic and non-prismatic 
structural elements lie in the establishment of member 
stiffness matrices and equivalent nodal-load vectors. 
The relevant programming routines for stiffness and 
member-end actions computations for both stepped 
(segmented) and linearly-varying (straight or tapered) 
flexural members have been provided in Ref. 6. 
Computational details for the establishment for 
stiffness terms and fixed-end actions for such 
members are further provided in Annex B. 
 
The flow chart given in Fig. 4 provides the overall 
programming logic implemented for the coding of 
the program. 
 

NUMERICAL EXPERIENCE 
 
The capabilities and output qualities of the 
computer program developed based on the 
procedures outlined this far will now be 
demonstrated on a two-way concrete bridge frame 
with linearly varying (tapered) girder members in 
both spans as shown in Fig. 5 [7]. The result will be 
compared with those obtained from theoretical 
manual calculations based on the Cross method of 

moment distribution [8] and those from a 
commercial software system [9]. 

 
Flexural moments at each end of a particular 
member as obtained from the three analysis 
techniques are summarized in Table 2.  For the 
sake of comparison, the bending moment diagrams 
by all the three approaches have been sketched in 
Fig. 6. 
 
 
 
 
 
 
 
 

INPUT 

ESTABLISH 
STIFFNESS MATRIX 

LOADING DEFINITION 
AND 

NODAL JOINT VECTOR 

DETERMINE 
SUPPORT REACTIONS 

DETERMINE 
MEMBER END ACTIONS 

OUTPUT RESULTS 

SOLVE FOR 
FREE JOINT DISPLACEMENTS 

ALL LOAD CASES 
PROCESSED? 

N 
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END 

Figure 4  Computation flow chart 
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One can easily observe that the results obtained by 
all the three approaches are comparable; indeed the 
procedure proposed in this work produces results 
that are closer to the theoretical ones compared to 
those obtained using the commercial software [9]. 
One reason could be that the present work is base 
on finding the solution of various integral equations 
in a closed analytical format, thus, providing much 
better results. 
 
Other structural response quantities such as axial 
and shear forces as well as the various types of 
displacements are also in close agreement. 
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Cross-sectional dimensions are in cm 

Theory  first set
This work second set
STAADPro third set

366.38
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368.53
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446.07
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757.81
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0
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19.20
13.74
12.59
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370.70
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196.37
193.38
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565.69
563.39

15.39
18.91
19.73

31.75
31.99
30.73

Figure 6  Moment diagrams by each of the three analysis options 

 Figure 5  A bridge frame for numerical example 
 

Joint Member Theory [7] Present 
work STAADPro 

A AD 12.59 13.74 19.20 
B BE 367.75 370.70 318.90 
C CF 30.73 31.99 31.75 

D 
DA -368.53 -367.92 -366.38 
DE 368.53 367.92 366.38 

E 
ED -757.81 -759.07 -718.25 
EB 563.39 565.69 521.89 
EF 194.42 193.38 196.37 

F 
FE 19.73 18.91 15.39 
FC -19.73 -18.91 -15.39 

 

Table 2:  Summary of flexural moments 
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CONCLUSION 
 
Economical design of frame-type structures may be 
attained by reducing member cross-sectional 
dimensions in the low-moment regions by 
introducing non-prismatic members whose shape 
follows the pattern (and, thus, the magnitude ) of 
the flexural moment. In this work, a computer 
program for the analysis of non-prismatic members 
with step-wise and linearly-varying cross-sections 
has been developed and tested. Automatic 
generation of generalized member-end actions in 
the form of axial and shear forces as well as 
flexural moments has been implemented for 
frequently encountered load cases. The later may 
also be extended and developed to incorporate a 
variety of other load cases. The program is easy to 
use and input-output information is printed in a 
separate file. 
 
The procedure and software developed in this work 
not only avail useful tools that meet a particular 
necessity, but will also serve as a basis for future 
developments of computerized analysis tools at 
least for the local structural engineering community 
that, in most cases, cannot afford to subscribe to 
high-end software systems. A number of 
application areas such as, for example, for the 
analysis of flat slab systems where the design is 
based on the equivalent frame analysis techniques 
may also be envisaged as a result of this work. 
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Annex A 
 
A-1 Evaluated integral for members with stepped (segmented) haunches 

Int. 
No. 

Ix, Ax arbitrary   
  Iz.x = Ic [(1+r(1-x/η)] 
 Ax = Ac [(1+r(1-x/η)]   
where η = l1 or l2 

Transformed integral 
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A-2 Evaluated integral for members with linearly-varying (tapered) haunches 

No. Ix, Ax arbitrary   
  Iz.x = Ic [(1+r(1-x/η)] 
 Ax = Ac [(1+r(1-x/η)] 
where η = l1 or l2 

 
Transformed integral 

η−= x1y  

 
         Evaluated integrals 
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A-2 Evaluated integral for members with linearly-varying (tapered) haunches (cont'd) 

No. 

Ix, Ax arbitrary   
  Iz.x = IC [1+r(1-x/η)] 
 Ax = AC [(1+r(1-x/η)]   
where η = l1 or l2 

Transformed integral 
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Annex B 
 
B.1 Element Stiffness Matrix in Structural Coordinates  
 
Structural or system coordinates are generally different from most member or local coordinates and are 
established in a manner suitable to facilitate the structural input data and also interpretation of computed end 
results, among others. 
 
Element stiffness matrices, established in local coordinates, need be expressed with reference to the structural 
coordinate in order to analyze the structure. To this effect, coordinate transformation [10] is employed and this 
constitutes one of the most essential steps in structural analysis. Through coordinate transformation, physical 
quantities of interest such as forces and displacements expressed in one of the coordinate systems are 
manipulated back and forth into corresponding quantities in the other system. 
 
Components of any form of actions and responses As in the structure coordinate system and those with 
reference to member coordinate system Am are related as follows [5].  
 

Am = R As  (a) 
 
where matrix R is referred to as the rotation matrix. A matrix such as R has the property that its determinant is 
unity; i.e 1=A . This result is a very useful property, referred to as the orthogonality property [10] and exhibits 
the relationship given by R-1 = RT.  
 
Thus, solving for As from Eq. (a), 
 
 AS = R-1 Am = RT Am (b) 
The transformation matrix R for a plane frame member has the following form:   



















−=

100

0CC

0CC

xy

yx

R
 (c) 

where   C x = cosθ   and   Cy = sinθ   and  θ  is the orientation of an element to the horizontal as shown in Fig. 2 . 



Computationally Efficient Analysis Procedure for Frames 
 

Journal of EEA, Vol. 27, 2010 23 

 
The relationship given by Eq. (a) is perfectly general and applies to both actions and responses. Thus, 
displacements expressed in one coordinate system may posed in the other using this same relationship.  
 
The action – displacement relationships at the two ends of member i in the local coordinate system xm, ym  may 
be expressed by the following 
 
 Ami = kmi Dmi    (d) 
 
in which A and D denote generalized actions and displacements, respectively. The member stiffness matrix kmi 
for a plane frame structure is presented in Eqs. (1). In order to proceed with the analysis, it is first necessary to 
transform kmi into the corresponding member stiffness matrix ksi in the structural axis.  
 
For this, we can write writing (d) in a partitioned form [5] as follows: 
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with reference to the two ends j and k of the member. By using the appropriate rotation formulas from Eqs. (a) 
and (b) and substituting in to the above, one obtains: 
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an equivalent form of Eq. (e-2)  is:   
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Equation (e-3) can be written in a simplified form as: 
 

T As = km T D s  (f) 
 
where 












=

R0

0R
T

, referred to as  the action-displacement rotation transformation matrix and the elements of As  

and D s  are actions and displacements at the ends of the member in the direction of structure axes. 
 
Pre multiplying both sides by T-1 and noting that T1   TT =−  one obtains, 
 

      sm
T

s DTkTA =  (g-1) 
 
Action displacement equation of a particular member in the structural axis, thus, becomes, 
 

As = kms D s (g-2) 
 
 
in which kms  is the member stiffness matrix for structure axes and is given by: 
 

     m
T

ms TkTk =  (h) 
 
Now, carrying out the matrix multiplications in Eq. (h) and the definition of kmi in Eq. (1a) provides the 
following member stiffness matrix kms in the structural coordinate: 
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where the following expressions are represented by respective stiffness terms: 
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and, further, 
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in which U0, U1, U2, U3, U4, U5 and U6 are given earlier by Eqs. (2). 
 
B.2 Member Fixed-End Actions in Structural Coordinates  
 
In order to proceed with structural analysis, it is further important to carry out the transformation of the member 
end actions given by Eq. (6) from member axes to structure axes. For this purpose, the concept of rotation 
transformation concept presented earlier can be applied in order to transform Am  into the corresponding values 
As in the structural coordinates. Thus, for any members, the fixed end forces AS in structure axes can be 
obtained from those established in the member axis Am using the relationships: 
 

AS = TT Am                                                                                                (j)  
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