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ABSTRACT 

The blending as to essential properties of raw materials 
tends to growing importance in chemical process industries 
recently. That is why the modeling of such processes is an 
urgent need. It can be shown - on the base of the general 
model for mechanical macroprocesses - that the modeling 
of blending processes is possible also in the case of 
stochastic input and output fluctuations. By means of this 
model. the influence of input fluctuations on the 
efficiency . of separation processes can be precalculated 
also. 

INTRODUCTION 

The aim of a blendiilg process in Chemical Process 
Industries consists in reducing the input fluctuations of 
mass flow rate and/or essential raw material properties, 
e.g., particle size distribution, chemical and mineralogical 
composition, moisture, ash content, calorific value a.o. 
Input and output fluctuations (time series) can be 
characterized by mean value for instance and variance or 
standard deviation, hence a blending process means the 
variance o/ (input) shall be reduced to o._/ (output), 

so that o y 2 
/ ox 2 < 1. In the following the blending of 

properties of material is considered only. 

The difference between a mixing and a blending 
process lies in the manner of consideration of a mixture: 
the mixing state is evaluated by drawing samples from 
different places at a fixed time, the spatial coordinates 
are variable; the blending efficiency can be evaluated by 
drawing samples at a fixed position (inlet and outlet) as 
function of time. For both processes, temporal and/or 
spatial displacement of relatively small volume elements of 
the material against each other is necessary. That mej!.Ils, 
both mixing and bleriding proce'>Ses can be modeled on the 
same base, e.g., a partial differential equation in space and 
time. Ressons for introducing blending processes in 
chemical process industries are recently: 

1 . 87 the mirUna, raw materials with relatively high 
variations . of the properties interesti.Jli can be 
delivered only (due to the geological situation of 
the deposits). 

2. By means of blending processes, essential improve­
ment of technological characteristics is possible 
(recovery of valuable components, efficiency of 
separation processes , etc.). 

3. The final products of chemical process plants 
including blending processes have smaller fluctu· 
ations in thl!r quality (e.g., cermaic raw material, 
coal for combustion in power plants, glass sand, 
etc.). 

4. Important decrease of the expenses for plw 
measuring and control is possible, because as 
rule smaller nuctuations are to control. 

Principally, blending processes are carried out ii 
1peciaJ blending equipment, e.g., in stockpiles (stacking : 
longitudinal direction, reclaiming orthogonally to th1 
direction of stacking) and blending bunkers (cell types an 
organ pipe bunder). In a stockpile the output fluctuation 
can be reduced to about 10% of the input fluctuations 
(rule of thumb), but it is also possible to use it for mixin 
purposes (different raw meal components for cement 
production) and buffering. 

Not only in special blending equipment blending. 
processes take place, but also in all apparatuses with a 
certain mixing effect and storage capacity, e.g., flotation 
cells or machines, mills (ball, rod mills), mechanical 
classifiers (rake, screw classifiers) and cyclones. 

TRANSFER OF STOCHASTIC PROCESS BY 

LINEAR SYSTEMS 

\ 

Very often it is possible to describe or to model the 
input and output fluctuations of essential material pro· 
perties as stochastic processes, e.g., stochastic input 
process X(t) and output process Y(t). Then the aim of 
modeling consists in finding input.output relationships in 
a mathematical form, e.g., the relationship between the 
standard deviations ox and o . By means of these y . 
quantities we can define the following characteristics for 
the result of a blending process: · 

blending effect 

efficiency factor 

oy 
G "" - • 100 in% 

ay 
Tl G • (1 - -) • 100 

"x 
• 100-Gin% 

(la) 

(lb 

Input.output relationlhipt play an important role 
not only terr the modeling of blending processes, a lot of 
analogous examples exists in other fields of science and 
technology; e.g., vibrations of mechanical/electrical 
systems at random excitation, compensation of the quality 
fluctuations of an entering gu stream by a gas holder, 
etc. [1]. 

Stationary 1tochastic processes possess - because of 
their· relatively' simple mathematical treatment - an 
especial Importance for the m()deling of blending 
proceaaea. Stochastic procesaes can be, characterized by 
•pecial momenta (in eeneral t ime-dependent functions) 
similar to the moments or a random variable: In general 
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U1e are the expectation function, the dispersion or variance 
function and covariance and correlation functions 
respectively (2). 

By meana of thete functions, stochastic proceues are 
described in the time domain, another po•ibility for that 
(applied e1peCially in electrical engineering) is the descrip­
tion in the frequency domain: A Fourier transformation 
of the stochastic proceu retulta in the spectral density, 
which gives the composition of the stochastic proceaa as to 
single frequencies. 

The general relationship between the input and the 
output of a system (both for deterministic and stochastic 
proceaaea) is given in the time domain by the Duhamel 
integral (convolution): 

t 
Y(t) • f h(t, t') X(t') dt' (2) 

to 

h(t, t') impulse response (Green function, weighting 
function) 

For imtance, the calculation of the output expectation 
function can be done in the following way; under certain 
conditions an exchange of calculation of e~pected value 
and int.egration ii possible: 

t 
my<t) • E [ f h(t, t') X(t') dt') 

to 

t 
(3) 

f h(t, t') mx (t') dt' 

to 

In the same manner, the other moment functions of 
the output procesa Y(t) can be calculated (dispersion 
function, correlation functions). A Fourier transformation 
of the Duhamel integral leada. to the following input. 
output relationship in the frequency domain: 

Sxy (w) • FUw) • Sx.x-(w) 

2 
Syy (w) • I FUw)I • Su (w) 

S( w) spectral density 

(4a) 

(4b) 

FU w) frequency function of the transfer system 

The area under the 1pectral density is equal to the 
variance of the stochastic proceu, that menu, in the 
frequency domain also, there is the desired relationship 
between the input and output standard deviation. The 
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procedure described above may be demonatrated at the 
example of an ideally miXed veael (Fig. 1 ). The impulle 
response is 

h(t, t') -
1 

T 

t ..l. t' 
exp(- -- ) 

T 
(6a) 

the frequency function and it.a absolute value reepectively 

FUw) • 1 i 1 
1 + jwT ; IF(Jw)I • 1 + w2 r (6b) 

The stationary stochastic input proceea X(t) shall be 

centered one (zero mean value) with the variance D2 X • 

ax 2 and an exponential type autocorrelation function 
(a.c.f. ): 

Rxx<r> • ax 2 
• exp(- a Ir I) (5c) 

the spectral density of this a.c.f. ia its Fourier trans­
formation: 

ai + wi 
(5d) 

In the time domain, the variance function ~ be calcu­
lated herewith (Fig. 2): 

t- ·to t t 
a;Y <7) • / J h(t, ~ )h(t, t;) Ru<t:, t;)<lt: dt; 

o to 
a2 

• (1 - aT + (1 + aT) 
(1 - aT)(l + aT) 

(6) 

t-t
0 

t-t
0 exp(- 2 --)-2 exp(-(1 + aT) --) ) 

T T 

With Eq1. (4a), (4b), (6b) and (5d) the ~denaity 
of the output proceu ii ~. an invene Fourier 
tranaformation liv• the Lc.f. of that plOCell (the relidue 
method mutt be Ul8d for the int.ep'ation (8): 

up(-alrl)-aT• exp(- Ir t/ T 
Ryy(r) • a:/ ---'-'--------...:...:._;......;.;_ 

1-o2 T2 
(7) 

t-t
0 

For -- -+ .. (variance function) or r • O (output 
T 

a.c.f. or crow correlation function allO) the blendint effect 
G and the ettlctency factor are available: 
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0 , 
'Y 1 100 --- G • in%; 
o' 1 +oT vI+OT ;c 

1 ) in ~ 
(8) 

710 • 100(1 
...JI+OT'" 

It can be concluded that the greater ii the volume of 
the mlxer (or the time constant T) the better is the blend· 
in1 effect and the dampina of the input nuctuations; the 
hiaher the frequency of the tluctuationa, the higher is the 
a.c.f. parameter o, that mean•, hiaher frequencies are 
better damped than lower onea. The procedure of cal· 
culatin1 the blendin1 effect for one vesael Ideally mixed 
can be ext.ended to a cucade of n ideally mixed ve11els. 
In thia cue, the mean residential time of one It.age is 
Tin, that means, the overall mean re1idential time is 
independent on the atqe number. From the result for the 
blendinc effect (Eq. (9), Fig. 3). 

1 
+-

?fl 
n-1 n+k-1 

:t ( n ) 
k•O 

(1-oT/n)n-lc -(1 + oT)n- ~ 

2"(1-01 r Jn' )n-lc 

(9) 

can be drawn the concluaion, that two mixers with T/2 
have a smaller blendinc effect than one mixer with a mean 
residential time T. Other residential time distribution 
model.I can be Uled for the calculation of blending 
prC>Cellel aho. 

GENERAL MobEL OF MECHANICAL 
MACROPROCESSES 

A model of a mechanical macroprocesa hu to reOect 
the -ntial microproceuet, al.lo their dependence on 
time, 1pace coordinatel and intenction1 in a volume 
element, concernJ.nc mau trazufer of particle c~ 
(size c1uees demity cl11111, etc.): 

mUI tnrufer by convection (directed motion) 

m ... trazufer by diffulic-'l (random walk) 

DWI tnrufer due to intc..- w-tiODI cbanae<f (source 
or link). 

The mathematical formulation Jives the followinl system 
coupled of put.ta! differential equ.µons for then particle 
cia- (m .. balance or atatiltical considerations): 

temporal 
alteration 
of the ith 
cluamua 

convection 
term 

diftusion 
term 

inter· 
action 
i.um 

m particle mua in the volume element 
II 

µ . mas1 fraction of the 1th clus in the volume element 
I 

This model (not resolvable without 1impllfication). ii 
widely u1ed for comminution, separation and mixinl 
processes. In . the case of modelin~ blendinc procette• 
the following aimplificationa are possible~ 

neither sink nor source (G1 • 0) 

the 111tem ii reprded u one-dimensional 

v 1 and Di are temporally and spatially constant 

the concentration (mus fraction) of one com· 
ponent is of interest only (qaoer substance). 

With these simplifications we 1et the partial differential 
equation of the so-called dispersion model, .anatoeoua .to 
the diffusion or heat conduction equation with convection 

(4and 5] : 

au a'u au • 0 D- + 11-

at b' .;c 
(lla) 

au 1 a'u ~u 0,. - + -- (llb) 

a(tm Bo a(;c/L}2 a(;c/L) 

dimeDlionle11, with Bo 
v•L 

• -- (Bodenatein number) 
D 

1. L ~ 
X(t) -'> [ V,D \--+ Y(t) 

~;c 

The differential equation can be solved (with IUited inltal 
and boundary conditions,\ e.c., accordini to Danckwelta 
(1) by meana of: 

separation of variables (relUlt: bupua ~. 
ts.me domain) 

Laphlce tn.mformation . (retult: tnnafer function, 
complex domain) 

Fourier tn.mformation (frequency function, 
domain). 
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The separation of variables results in the impulse response, 
which corresponds for x = L with the residential time 
distribution density of the system: 

h(t/T) 
1 

=-
T 

(-l)n+l • 2 •a 2 
oo n 
! 

n=l a 
2 

+ Bo2 /4+ & n " 

an 2 + Bo2 /4 
exp(Bo/2 - ----- t/T) 

Bo 

with the eigenvalue equation 

1 an 
ctgan = - (--

2 Bo/ 2 

(12a) 

(12b) 

In the limit as Bo ~ 0 and Bo ... oo it can be shown, that 
the . result is the impuse response, transfer function and 
frequency function of the ideal mixer and the plug flow 
reactor respectively. Eq. (12a) represents a Fourier series 
(modified by means of the eigenvalue equation), another 
representation is possible as series of error functions and 
their repeated integrals. The first term of this error 
integral series is the exact solution for a half~nclosed 
system (used also for modeling mixing processes for 
relatively short mixing times), the further tenns of that 
series for the closed system originate from reflection at 
x • L and superposition [ 4]. 

In Fig. 4 some ·results of the calculation of the 
efficiency factor are represented graphically. Calculations 
for the instationary state of the system must be done in 
the time domain, the calculations in the frequency domain 
are simpler, but possible in the stationary state of the 
system only. The relative! y complicated formulae for 
the blending effect and the efficiency factor - the 
procedure is analogous to that of the ideally mixed vessel-:­
can be taken from the original literature (2]. 

APPLICATION OF THE RESULTS 

1. By means of the results mentioned above (curves· for 
the efficiency factor 110 ) an approximate detenni-

nation of the Bodenstein number Bo is possible if the 

a.c.f. of the input (e.g., the parameter a) 

time constant T 

blending effect G (or 110 ) 

are available by measurements. The advantage of such 
a method is that no additional tracer is necessary, but 
a sampling problem has to be solved (sample mass, 
distance). 
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2. A further application is possible on separation pro­
cesses, especially on the model of cross-flow classifier 
(Fig. 5) [6). The processes in this type of classifier 
can be described by Eqs. (10) and (11) respectively, 
but the convection (that means the settling of 
particles) is directed downwards. In the stationary 
state, there is a balance between m1xing effects 
(turbulent diffusion) and segregating ones (settling of 
particles), resulting in an exponential_ concentration 
distribution, the so-<:alled height distribution. The 
boundary conditions must be fo~ulated so, that the 
mass flow at z/H=O and z/H=l vanishes, that means 
reflecting boundaries (Fig. 6). According to the dif· 
ferent magnitude of order of the Bodenstein number 
Bo ... 11. HID we can differ the· following states of 
co~centraiion distribution in the model: 

State Description 

(a) sedimentation 

(b) height distri-
bution (ex· 
ponential°l 

(c) equidis-
tributioil 

Reasons 

1. D = 0 (no turbulent dif-
fusion) 

2. 118 large (Bo
8

, dp large) 

both effects in similar order 
of magnitude 

1. 11 s = 0 ('y = g. ) 
2. 11

5 
... 0 (very fme 

particles) 
3. D -. oo (high intensity 

turbulence) 

On the base of a suited separation model (e.g., pulp 
division model, Fig. 5), the Tromp distribution curve 
(or distribution factor curve) can be calculated, in our 
case: 

exp(Bo
8
)- exp(.Bo

8
(1 - Hcoarse /H)) 

exp(.Bo
8

) -1 

1-exp(- Bo8 • Hcoarse fH) 

1-exp(-&
8

) 

(13) 

The slope in the middle part of this curve characterizes 
the sharpness of separation. If the stationary state of 
the separation process is not yet reached, the sharpness 
of separation is smaller than for the stationary state 
(Fig. 7). This conclusion is confirmed by experimen­
tal results in hydrocyclones. It can be shown in a 
similar manner for an one-phase flotation model~ 
that in presence of instationary states (fluctuations 
of input concentration) the efficiency of separation 
is decreased. 
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NOTATION 
Modeling of Blending Proce_sses 

a a.c.f. parameter 

an 

Bo, Bos 

dp 

.D 

D2 X 
E/ I 

eigenvalues 

Bodenstein number (general, for settling) 

particle size 

diffusion coefficient 

variance 

expectation value 

F(jw) frequency function 

G blending effect 
Gi interaction term (sink or source) 

h(t, t') · impulse response 

H,Hcoane' heights in the pulp division model 
Hfine 
j imlginary unit 

k 

L 

mv 

mx<t), 

mlt) 

summation index 

length 
mass fraction 

input and output expectation function 

n stage number, summation index 
) 

Rxx (T) • input and output a.c.f. 

Ryy (T) 

Sxx (w), 

syy (w), 

sxy (w) 

T 

t, t
0

. (, 

ti'.t2' 

u 

v, 1', v
8 

spectral densities 

time constant 

time 

general concentration 

velocity directed (convection) 

X(t), Y(t) stochastic input and output processes 

x, Y input and output variables 

x 
z 

a~, a~ 

length coordinate 
height coordinate 

particle density 

blending efficiency factor 

mass fraction of the ith class 

fluid density 
variances, dispersion 

standard deviations 

0 i t-to ) dispersion function 
yy T 

T 

w 

correlation time 

angular frequency 
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