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ABSTRACT

In this paper, the influence of transverse crack of a
simple rotor systent on the non-resonant and resonant
response are discussed. The existence of cracks on the
rotor changes the stiffness and damping properties, as
a result the characteristic feature of vibration. For
theoretical investigation, the stiffness of the cracked
shaft is modeled approximatelv with a harmonically
varyving function fo simulate the opening and closing
of the crack with the rotation.  On the basis of this
idealized madel, the influence of a crack and its
depth both on the stationary and non-stationary
vibration behavior is investigated and numerical
results presented,

INTRODUCTION

Because of the extent of damage that can occur as the
result of failure, lots of theoretical and experimental
work on the problem of cracked rotor, based on
simplified model or real rotor has been published.
Most of the studies [ 1, 2, 3. 4, 6, 7, 8] arc based on
simplified rotor, Jeffcott rotor considering different
crack models. In [7], the theorctical investigations has
been verified experimentally.

The theoretical studics in [2. 7], presented the effect of
crack on the natural frequency making different
assunptions and formulating diflferent crack models.
The spring characteristic of the crack werc expressed
by Ishada et. al. [} with a power series while Gasch
and Henry with a piece wise linear stiffness. Hamidi
and others [2], also studied the influence of cracks on
the modal characteristics of rotors, but the study was
limited on the natura! frequency. Liao et. al. [7],
investigated the steady state response of a cracked
Jeficot rotor, modeling the crack by a hinge model and
expressing the changes in stiffncss due to a crack by a

Fourier series and for a zero unbalance. The change
of the natural frequency due to the crack was verified
experimentally.

The works done so far on the problem of cracked
rotors concentrated mainly on the natural frequency
changes and the steady state behavior as the crack
developed. The influence of the crack on the trangient
behavior, the situation during the start up and shut
down, is not investigated. Therefore, the purpose of
this work is to study the effect of a crack on shafts
both on the steady and the non-stationary behavior,
based on Mayes stiffness model [8] so that its
information can be utilized in the early detection of
cracks in rotating machinery diagnosis.

EQUATION OFMOTION OF ROTORSYSTEM

To study the vibration phenomena of a cracked shaft,
consider a simple Jeffcot rotor shown in Fig. (1), with
a transverse crack located in the middle of the span
with the section of the shaft at the crack lecation
shown Fig. 1(b). The position of points on the section
may be described with respect to the fixed coordinate
system (YYZ) whose Z axis coincides with the bearing
center line and also with the coordinate x’ y” rotating
with the crack section.

Figure 1 Jeffcot rotor
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The equatton of motion of the horizontal rotor without
a crack and excited with unbalanced rotating mass is
of general form

Mi+ Ci+Ke=f, + ., (1)

55,5‘5 and¥ are the displacement, velocity and
acceleration vectors in the incrtial frame of reference.
M,C and K are the time independent mass, damping
and stiffness matrices d'l: the uh-cracked shaft.

f, and [, Are the weight and the unbalance mass
excitation forces.

Crack Model

The mathematical model of the stiffness and the
damping parameters in the Jeffcot rotor assumes
symmetric and equal both in ~ the x- and the yp-
directions of deflections. With the development of the
crack on the cross-section of the shaft however, these
will not be the case. The existence of the transverse
crack alters the stiffness, The assumed symmetry of
the stiffness in the x- and in the y-directions ceases
and the magnitude will have two componcnls, a
constant and time dependent components. Sumilarly
the damping parameter changes.

With the development of a crack. the stiffness matrix
given in Eq. (1), bccomes time dependent

K = K(r) . The stiffness parammeter can be modeled,
considering the crack as a scgment of a circle that is
infinitely thin and with a depth of a as shown in
Fig. 2. Initially, without the crack, the stiflness of the
shaft both in the x- and in the y-directions is
determined from

4851
k. =k, =

x y 13

2

With the crack initiated, it opens when the load on the
cracked side is tensile and closes when it is under
compression. When it opens, the scction

properties /,  and /, reduces as a result the bending
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Figurc 2 Development of a crack

stiffness &k, and k&, obtained from Eq. (2) will have
a minimum vahlie respectively. On the other hand,
when it closes the shaft behaves as if there is no crack
on it and the stiffness becomes & = k, = k.

For the breathing crack, the bending stiffness both in
the x’- and y’-directions. thus varies between a
maximum valuek, when the crack closes and

minimum £ k

x—m> " y-m

respectively, A good

approximation of the cyclic stiflness variation will be
a harmonic variation, within a period of (27 / Q).

where {) is the shaft angular speed of rotation. For a
constant spced of rolation, the variation of the
stiffness in the x’- and y’-directions can thus be
modcled after [7] by

k t k.\'rﬂ A X 6
k(1) = )t cos ()
(3)
k\’m A V
k(1) = 5 + 3 cosd(t}
wherc
k 0 Shaft stiffness with no crack
Ak, = ko - kxmm stiffness reduction in the x-

direction with the crack open
= ko — k,_,, stiffncss reduction in the y-

direction with the crack open

v

Aky
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k., (t)stiffness with respect to the rotating

: ! i
coordinate X', y

kxm = ko + kx_m the mean stiffness about x’
axis

k pm =k0 + k y—m the mean stiffness about y’
axis

k., the min. stiffness in the x” direction for a
given crack depth ¢

k., the min. stiffness in the y* direction for a

given crack depth g
#(t)  The shaft angular rotation with respect to x-y
coordinate

Transforming the time dependent stiffness given by
Eq. (3) to the space fixed coordinates x and y with

x' cosQt  sinQr|[x Tx @
Y| |-sinQr cosQr|ly| |y

vields the stiffness in the inertial frame XYZ as

KO =T kT (5)
with

ey 0]

Lo ko (6)

the stiffness matrix in the rotating coordinate xy’,
with the clements form Eq. (3). The transformed
stiffness matrix finally, can be written as a
superposition of constant and time dependent
components.

K(n=K,+AK(D) (N

Equation of Motion with Crack

The equation of motion of the rotor shown in Fig. 1,
with a crack will be of the same form as that of the
un-cracked one, except the changes in the stiffness
matrix term. Employing the transformed crack model
given by Eq. (7), the equation of motion in the fixed
coordinate will be of the form

M3+ Cx+[K, +AKWE = £, + fu, )

where K_ is the constant stiffness matrix of the un-
cracked shaft
(2+x . +x,)/4 0
K, = 9
o0 0 (2+4x, +x,)/4 ©

andis the time dependent component of the

stiffness matrix due to the crack. From Eqgs. (3), (5)
and (6)

I Ju Ja
Kt =—Ak
K@ 2 a[le fzz:l 1o

The parameters
J11 = Ccos(CU) +2 cos(2Q) — cos(3U)
J12 = —sin(€2r) + 2 sin{203¢) — sin(3CY)

San = (24 C)cos(CU) — 2 cos(2Q) + cos(302)
(1)

4-3k -k
C=——20 A=k, —

Ky =k, 4

szkx—min',kﬂ; fy‘_‘ky—min'{ko:fu:le

is the phase that depends on the mode of operation
and generally, it is described by the integral of the
speed of rotation and its variation is

&{(t) = jQ(t)dt (12)
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In a non-dimensional forin Eq. (8) can be rewritten as

X 2R+ 14 AK (0) k| X =
- - (13)
(fw! + fun)/kc‘

assuming the damping ratios both in the x and y
directions are the same, with

wot=1; Oy =1/kc fm,clm=2w,;

24k tr,
4

(14
xle=X orx/Ay, =Xk, =k

Equation (13) describes the behavior of the cracked
rotor, both during the steady and transient operation.

Steady State Response

The equation of motion of the cracked shaft Eq. (14)
is a differential equation with a harmonically varying
coeflicients. Thus. diflicult to obtain the complcte
exact analytical solution. The complete solution
however, is given as a superposition of the
homogeneous and particular solution,

X(r)= X

hom

+ X, (15)

The homogeneous part decays away if the sysiem is
stable. The steady solution vector of the equation of
motion is obtained as the sum of three vectors, X', -
the response due to the unbalanced excitation, X -
the gravitational force and X, - the non-linear force
due to the crack.

In the equation of motion, the time dependent stiffness
component AK(r} is smail compared to the constant
stiffness term K | for all, except for large cracks.

Thus, an approximate solution of the cquation of
motion that gives the stcady response can be
determined by perturbation method.
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The first approximation of the steady state solution is
obtained neglecting the time dependent term and
reducing it as two decoupled differential equations

X'+ 20X+ X, = f(r) (16)

where the right hand side is

- , | cosd(z) 0
J@)=n {sinﬁ(r)} i {— A /e} an

In this case, the angular rotation of the rotor is
constant and the normalized phase #(z) is the
described by

Oz} =0, + 71 (18)
where 6’0 . 1, = Q/w, arcthe non-dimensional

initial phase speed ratio respectively. Part of the
steady state solution due to the unbalanced excitation
will be

5

n
T /

Y- o :
JU—-n237 +@¢n)

X =
(19)
sin[6(r) - 4]

Substitute this solution in Eq. (13), as a first
approximation to AK(7)- X, . Hence, we obtain the
equation in matrix form as

X vk + X =-AK(X, Qo

The solution of Egs, (16) and (20) yields the response
as a superposition

X(r)= X Ar)+ X_(1) 1)
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When there is no unbalance, the excitation on the
rotor will be due to gravitational force only

- 0
r) = (22)
o] 0|

For this case, the total solution will remain of the same
form Eq. (21)

X, (1) = X (0)+ X, (1) (23)

Transient Response

The rotating speed of rotating machines are usually
much higher than the main critical speeds. Therefore.
they have to pass through the critical speeds during
starting and shut down. So it is esscntial to analyze the
behavior of the rotor when translating through the
critical speeds before reaching the operating speeds
also to obscrve the influence of developed cracks.

The transition of the rotor through the critical speed,
can satisfactorily be simulated with linearly varying
excitation specd assuming sufficient power supply.
Thus, the excitation speed can be described by

Q) =Q,+Qt (24)
and the phase

I .,
0(1)= [QUydr = 6, + Qo+ 501 @)

When normalized with the Eq.(14), the phase
describing the transition through resonance becomes

I,
A(r)=6,+ Mot + atr” (20)

wherea = Q / a)S is the ratc of change of speed. The

equation of motion Eq. (8) with the phase Eq. (20),
describes the non-stationary operation of a cracked
rotor. The equation of motion in this case does not
have a closed form solution and can be solved
nunmerically.

Numerical Results

The numerical investigation presented are for the
model shown in Fig. (1) and the vibration response
follow Eq. (8) and phase Eq. (26) for steady state

(¢ =10)

Figures 3 and 4 show the dynamic displacement of
the shaft with cracked-forced excitation in the
horizontal and vertical directions respectively due to
the gravity load only for (= 00075 . With the
assumptions used and with the existence of transverse
cracks, the displacements consist of the three
harmonics. Resonance therefore, occurs atn, for

the #  harmonics, at #n,/2 for the2xn

and#, /3 for the 3 x # harmonics, where 1, is the

natural frequency of the shaft with no crack. The
higher harmonic component resonances are non-
existent in un-cracked rotor.

For a constant damping and excitation due to the
gravitational load only, the maximum peak resonance
displacements in the herizontal direction occur

at#s1 = n, / 2 while in the vertical direction it occurs
at n=n,
The peak amplitude in the vertical direction due to the
gravilational load ouly occurs at #2 = 1, . These two

figures show that the peak value at resonance is
strongly influcnced by the gravitational load and the
degrec of crack depth. Furthermore, with the increase
in crack depth, the contribution of the higher
harmonic components becomes more significant.

Figures 5 and 6 shows the dynamic displacement of
a cracked and un-cracked rotor subjected to the
combination of the gravity and unbalance, for the
eccentricity to static deflection ratio of 0.035. With no
crack, the resonance peak amplitude, both in the
horizontal and wvertical directions can be
approximated by 1/(2{") and occurs at 1 = n,.
However, with the existence of a crack, the resonance

peaks at 7, and also at the higher harmonics are
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strongly influenced and they either increase or
decrease the amplitude depending on the position of
the crack with respect to the unbalance mass. The
increase is when the unbalance mass is in the same
side of the crack and the vice versa when it is on the
opposite side of the crack . As shown in figure (5&6),
the resonance peak increases from with increase in
crack depth when the position of unbalance is in the
opposite side of the crack. For other unbalance
positions, the peak will be smaller,

Figures 7 and 8 show the peak amplitude in the
horizontal and vertical directions with the increase in
crack depth and different damping. From the figures,
for low damping, the resonance amplitudes both in the
horizontal and vertical directions for all harmonics
may increase with crack depth when the unbalance is
in the side of the crack This marked increase however
disappears for higher values of damping the effect.

For the non-stationary case, the equation of motion
Eq. (8) with the phase form Eq. (26) are numerically
computed to obtain the displacement in the horizontal
and vertical directions during passage of the
rotational speeds through the critical speeds.

Figure 9 shows the displacement in the horizontal and
vertical direction of the cracked rotor for constant
damping (£ = 0.075), when passing through the
main critical speed, with an acceleration of
a = 00075, The response indicates, the peak
amplitudes at the higher harmonics disappear as there
is no time for the build up. On the other hand, the
peak amplitude at 77, increases strongly compared to
the amplitude increase of un-cracked rotor with the

same acceleration and the frequency at which it
occurs is shifted to the right.

02 : e
DAB[

X/A, !

048

OA4f -

R I

0.08L - X

0.06
004

0.02 -

0

no/3 Myl

0 62 04 06 08

1 12 14 18 18 2

LLEY n

Figure 3 Dynamic displacement due to gravity excitation with

damping ¢ = 0.073
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Figure 3 Dynamic displacement in the horizontal direction due
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Figure 6 Dynamic displacement in the vertical direction due to
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Figure 8 Dynamic displacement variation in the
vertical direction for different values of damping and
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Figure 9 Transient vibration amplitude when accelerating
through the resonance @ = 0.0075,4 = 0.075

CONCLUSION

According to the numerical results obtained in the
previous section, the following conclusions can be
drawn:

-~ besides the first harmonic, there exists higher
harmonics in stationary response and among the
harmonics, the second harmonic is most
obvious.

because of the existing higher harmonics,
fractional critical speeds such as %2 and 1/3
speced will occur. Thus when the speed
approaches the fractional critical speeds, the
corresponding resonance will occur,

the magnitude of peak amplitudes at resonance
may increase or decrease with the existence of
crack. It depends on the orientation of the
unbalanced mass relative to the crack. For all
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damping, it increases when the unbalance is on
the same side of the crack and decreases when
it is opposite to it.

- for higher damping values, the characteristic
observed due to the crack, appearance of
resonances at the frequencies 2, /2 and s, / 3
can not be observed.

— the transient response indicates, that the
amplitude at the main resonance increases and
at the same time is shifted to a higher
frequency.

The response changes due to the existence of ¢racks
are significant changes and can be observed on
vibration measurement during machinery health
monitoring. These changes both from the steady and
‘transient responses are indicators of the initiation of
cracks and can be utilized in the diagnosis of
machinery health in practice.
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