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ABSTRACT 

 
Frequency spectrum is one of the biggest natural 
resource which has a significant impact on the 
development of wireless communication 
technologies. Therefore, utilizing this natural 
resource in an efficient way accelerates the 
technological advancement. The spectrum 
allotment strategy that has been serving well the 
wireless communication family is the fixed 
spectrum allocation strategy. However, the 
increasing demand to use wireless technologies 
increased the competition for spectrum. As a result, 
there is no usable frequency spectrum left 
unoccupied. In spite of this spectrum scarcity, 
different research shows that most of the times 
most of the spectrum bands are not in use. The 
proposed solution to overcome this problem is to 
use the cognitive radio technology.  
 
Cognitive radio is a wireless communication 
technology which adds intelligence to the existing 
wireless communication scenario. As every 
wireless communication requires antenna, in this 
paper the feasibility of smart antenna to this 
intelligence system is studied and the performance 
(based on computational complexity, convergence 
rate and radiation pattern characteristics) of 
different adaptive beamforming algorithms are 
investigated. The investigation result shows that the 
Sample Matrix Inversion (SMI) algorithm besides 
its best convergence rate, also produces radiation 
pattern that best suits the behavior of cognitive 
radio technology. 
 
Key words:  Cognitive Radio, smart antenna, and 
Adaptive beamforming algorithms.  
 

GENERAL BACKGROUND 
 

Communication in general is a transmission of 
signal (information) from one point (source) to the 
other (destination). Basically, it is an inherent 
behavior of all living matter to communicate, in 
particular human beings have used this 
phenomenon as a tool to change this world in all 
dimensions. Therefore, the history of 
communication is totally linked to the history of 
living matter. Different disciplines classify types of 
communication differently but from 
communication engineering point of view, it can be 

broadly classified as either wired or wireless 
communication. This paper is confined to the latter 
types of communication.  
 
Because of its most convenient features, the 
wireless communication is leading the market of 
communication technology. The ever-increasing 
demand of the world to use wireless technology has 
motivated both researchers and the business 
community to come up with new services and 
ideas. However, this motivation is being restricted 
by the scarcity of spectrum bands; hence all 
spectrum bands of wireless communication are 
already occupied [1]. This is so, because of the 
fixed spectrum allocation strategy used. To 
alleviate this problem cognitive radio (CR) 
technology is proposed [2, 3].  
 
Cognitive radio is a wireless technology that senses 
the external environment, learns from experience, 
plans based on knowledge, and decides based on 
reasoning. In general, it adds intelligence to the 
existing wireless communication. 
 

PROBLEM DESCRIPTION 
 
Though cognitive radio technology has many 
advantages, it has limitations like complexity, 
interference and detection [4, 5]. This work tries to 
give a solution to the interference and detection 
problems. 
 
Since the cognitive radio is a wireless technology it 
requires an antenna to establish the wireless link. 
Therefore, it is possible to overcome the problem 
associated with interference by using an 
appropriate antenna. For this technology we 
propose to use smart antenna (adaptive array 
antenna) because it has much more beyond the 
interference reduction capability like increasing 
spectrum utilization efficiency, increasing capacity, 
extended coverage area, reducing power 
requirement, reducing the amount of 
electromagnetic radiation to the globe etc [6-8]. 
Omnidirectional antenna is excluded due to its 
obvious power dissipation and its being source of 
interference to others. 
 
This adaptive array antenna has got its ‘smartness’ 
from digital signal processing that is incorporated 
within the adaptive antenna array system. The main 
purpose of the digital signal processing unit is to 
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add adaptability nature to the array antenna in such 
a way that the antenna dynamically produces 
narrow and stronger beam to the direction of the 
intended user and nulls to the direction of 
interferers by tracking the new locations of both the 
user and interferers. This process is known as 
beamforming. 
 

SPECIFIC OBJECTIVES 
 

This work exclusively emphasizes on the following 
objectives: 
 
 To study the fundamental behaviors of smart 

antenna and propose it for the cognitive radio 
technology. 
 

 To investigate the performances of different 
adaptive beamforming algorithms such as 
sample matrix inversion (SMI), least mean 
square (LMS), recursive least square (RLS), 
constant modulus (CM), and least square 
constant modulus (LS-CM) and choose the one 
that best suits the cognitive radio architecture. 

 
COGNITIVE RADIO (CR) 

 

Cognitive radio was first coined by Joseph Mitola 
III [3], and he defined it as follows: “The term 
cognitive radio identifies the point at which 
wireless personal digital assistants (PDAs) and the 
related networks are sufficiently computationally 
intelligent about radio resources and related 
computer-to-computer communications to: 
 
 detect user communications needs as a 

function of use context, and 
 

 Provide radio resources and wireless services 
most appropriate to those needs. 

 
Since then the concept has got popularity and 
different groups are working on it for its feasibility 
[2, 3, 5, 9-13], and. [20]. Those working groups 
have developed their own working definition but 
the central ideas can be summarized as follows:  
Cognitive radio refers to an intelligence wireless 
system that 
 
 senses and is aware of its operational 

environment. 
 

 does  not operate in a fixed assigned band but 
it rather searches an appropriate band to 
operate without any user intervention. 
 

 can be trained to dynamically and 
autonomously adjust its radio operating 
parameters accordingly. 

 learns from experience, plans based on 
knowledge, and decides based on reasoning.  
 

Therefore, CR improves spectrum utilization by 
making it possible for a secondary user (unlicensed 
user) to access a spectrum hole unoccupied by the 
primary user (licensed user) at the right location and 
time in request. A spectrum hole is a band of 
frequency assigned to a primary user, but, at a 
particular time and specific geographic location, the 
band is not being utilized by that primary user.  
 
The spectrum freedom obtained from CR will 
increase the number of wireless operators which will 
undoubtedly increases the interference level. 
Therefore, to reduce interference, overcome 
detection problem, and increase coverage area, 
appropriate technologies must be chosen for this 
new technology. 
 

SMART ANTENNAS 
 

Generally speaking, all types of antennas exhibit 
directivity except the isotropic antenna, which does 
not exist in the real world. Though, the level of 
directivity varies from one type to the other, 
directive antennas have many areas of applications 
in wireless communication. Array antenna 
technology is a more practical way of producing 
highly directive radiation pattern than producing 
the required radiation by using single and large 
antenna. Besides, it has the following advantages 
[14, 15]:  
 

 It produces narrow, electronically steerable and 
more directive beams. 
 

 It tracks multiple targets 
 

 It produces low side lobes  
 
The above mentioned advantages have been used 
by deploying array antennas into the wireless 
communication technologies.  
 

Adding some intelligence to the array antenna 
helps in tracking the dynamic wireless environment 
and user location. It is just because of this 
intelligence that the array antenna system has got 
the so called naming of Smart Antenna / Adaptive 
Array Antenna / Adaptive Beamforming. Fig. 1 
shows the block diagram of an adaptive array 
antenna. 
 

Smart antenna may be considered as a marriage of 
array antenna and digital signal processing 
technology to improve the performance of wireless 
communication technology by changing its 
radiation pattern dynamically to suppress noise, 
interference and reject multipath. In general, 
deploying smart antennas to the wireless 
technology have the following benefits [6, 8, 16-
18],  
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i. Reduction in co-channel interference 

ii.      Range improvement / range extension  

iii.   Increase in capacity  

iv. Reduction in transmitted power  

v. Reduction in handoff  

vi. Mitigation of multipath effects 

vii. Compatibility with TDMA, FDMA, CDMA,   

SDMA                                     

 
 
 
 
In vector form 
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Figure 1 Block diagram of an adaptive array antenna. 
 
Because of the above mentioned benefits, smart 
antennas are proposed to be used in cognitive radio 
technology to combat mainly interference and 
reduce false alarm detection but in conjunction 
with this, the other benefits could also be enjoyed 
[5, 19].  
 
The output of any beamformer is given by the 
following relation [7, 17], 

          




N

n
nn txwty

1

* )()(   -------------    ----- ((1) 

Where 

nw
  
is a complex weight applied to the nth   

        element.  

)(txn is the signal received by the nth     

       element at time t  
 

   (.)* signifies complex conjugate.  
 

For digital beamformer (adaptive array) the inputs 
to the beamformer are fed in digital form as shown 
in Fig.1. Therefore, the output of the beamformer at 
the kth sample is given by [7, 8]: 
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The objective of the adaptive element in the smart 

antenna system is to find weight vector W  in such 
a way that the formed radiation pattern from the 
antenna array would acquire the following 
characteristics [7] 
 
 Producing very strong beam to the direction of 

intended user. 
 

 Formation of nulls to the direction of 
unintended users/interferers. 
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Consider M number of users with signals 

impinging upon the array and let )(tX k  denote 

received signal vector corresponding to the kth user.  
 

For LOS communication )(tX k  may be 

expressed as [8] 
 
 

)()()( tsatX kkkk   -------------      -----       (5) 

 

Where k is the scalar complex path amplitude, 

)( ka   is the array response vector in the direction 

of arrival k  of the kth user, and )(tsk  is the 

complex baseband signal impinging upon the array 
from user k.  
 
Then the total received signal vector by the array 
becomes 
 





M

k
k tntXtX

1
)()()( -------        --------------- (6) 

 
Where )(tn  accounts for receiver noise as well as 

background channel noise which can be taken as 
Additive White Gaussian Noise (AWGN). In 
matrix form Eq. 6 could be rewritten as  
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Information about the direction (location) of the 
users is contained in the steering matrix, A. 
 
To elaborate the idea discussed above, simulations 
were carried and Fig. 2 shows the radiation pattern 
simulated for a user located at 500 and interferers 
located at 800, 1200, and 1700. In the rectangular 
plot of the simulation results, the asterisks (*) 
correspond  to  the location  of  interferers  and  the  
solid line at 500 corresponds to the location of the 
desired user. This simulation is carried out to 
simply show the capability of digital beamforming 

(adaptive beamforming) in producing strong main 
beam to the direction of the intended user and 
placing nulls to the directions of the undesired 
interferers’ locations effectively. In this way the 
interference problems associated with cognitive 
radio technology could be alleviated by the use of 
smart antenna technology.  
 

 
a) Polar plot of radiation pattern. 

 
 

 
 

b)   Rectangular plot of normalized array 
 factor 
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c) Plot of array factor in dB 

 
Figure 2 Simulation of radiation pattern for an    
               array having 4 elements and 4   
               numbers of users. 
 
To exploit the advantages of smart antenna fully 
for time-varying environment and extend its use to 
the new emerging CR technology, we have to 
examine the beamforming techniques used by the 
existing wireless communication and select the one 
that best suits the CR technology. To do this, there 
must be an adaptive algorithm that can track the 
change and update the system with the necessary 
information required to form strong beam to the 
directions of intended users, nulls to the directions 
of interferers and generate equal side lobes (with 
minimum detectable energy) to overcome the 
hidden node problem and ease detection. The next 
section is therefore devoted to performance study 
of different beamforming algorithms.  
 
ADAPTIVE BEAMFORMING ALGORITHMS 

 
There are two types of beamforming: conventional 
and adaptive beamforming. The conventional 
beamforming includes the entire beam shaping 
techniques used in conventional array. Whereas 
adaptive beamforming is a type of beamforming 
which dynamically changes array weights based on 
the dynamically changing environments so as to 
make optimum beam to the direction of the 
intended user and put nulls to the direction of the 
interferers/noise. This phenomenon is 
accomplished by using adaptive beamforming 
algorithms. The theme of this section is therefore to 
make theoretical investigation and compare the 
different adaptive beamforming algorithms.  
 

Basically, there are two major classes of adaptive 
beamforming algorithms based on their 
requirements for training signal sequence: Non-
Blind and Blind Adaptive Algorithms [7, 17, 19]. 
 
Non-Blind Adaptive Algorithms requires statistical 
knowledge of the transmitted signal in order to 
optimize the array weights. In other words, to 
extract the desired user(s) from the surrounding 
environment (received signals) a training signal 
sequences which are known both at the receiver 
and transmitter are transmitted. Then based on the 
information obtained from the received signal 
about the channel the array weights are optimized 
(adjusted) to reduce  the error between the received 
signals sequences and the known transmitted signal 
sequences at the receiver.  
 
Unlike non-blind adaptive algorithms, blind 
algorithms do not require training signal sequences 
rather they try to estimate information from the 
received signal. 
 
In this section, the performance of the non-blind 
and blind adaptive beamforming algorithms, in 
particular:  Sample Matrix Inversion (SMI), Least 
Mean Square (LMS) and Recursive Least Square 
(RLS) from the non-blind category; and Constant 
Modulus (CM) and Least Square Constant 
Modulus (LSCM) from the blind are dealt with 
based on different weight optimization criterions. 
 

SAMPLE MATRIX INVERSION (SMI) 
ALGORITHM 

 
SMI algorithm is an algorithm which uses 
Minimum Mean Squared Error (MMSE) criterion 
to obtain the optimal array weight vector. Since we 
do not have the true auto-correlation matrix and 
cross-correlation vector, this algorithm replaces 
both of them by their corresponding estimations 
(time averaging) to obtain the Wiener-Hopf 
solution. The estimations are given by [7]: 
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Where:  N is the block size. 
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  dXEr xd  is the cross-correlation    

vector  
 
         (.)d  is the reference signal 

 
In terms of the above estimations the Wiener-Hopf 
solution becomes [7] 
 

xdxx rRW





 1
---------------------------           -- (10) 

 
The estimation error which is also known as the 
residual error is given by  

xdxxest rWRe



 --------------------------        - (11) 

 
As the block size increases the time average values 
better approximate the ensemble, resulting in a 
minimized estimation error in such a way that a  
much more closer solution to the Wiener-Hopf is 
obtained. Because of the time varying nature of the 
wireless channel, the block adaptation is made 
periodically. 
 
This algorithm is very suitable for applications 
which have bursty nature (for discontinuous 
transmission) because its adaptation is made in 
block form. The stability of the SMI algorithm 
depends on the ability to invert the large covariance 
matrix. In order to avoid a singularity of the auto-
correlation matrix, a zero- mean white Gaussian 
noise is added to the array response vector. It 
creates a strong additive component to the diagonal 
of the matrix. In the absence of noise in the system, 
a singularity occurs when the number of signals to 
be resolved is less than the number of elements in 
the array. The main limitation of SMI algorithm is 
its computational complexity since it uses direct 
matrix inversion 
 
Least Mean Square (LMS) Algorithm 

 
This is the second type of beamforming algorithm 
which uses the MMSE criterion; that searches for 
the optimal weight that would make the array 
output either equal or as close as possible to the 
reference signal or minimizes the Mean Square 
Error (MSE). Unlike SMI, the LMS is very suitable 
for continuous type of transmission since its 
optimization is based on the instantaneous received 
data. The optimization for LMS is done by 
employing the Steepest Descent Method which is a 
recursive way of optimizing the array weights. 
 
The Steepest Descent Method is recursive in the 
sense that its formulation is represented by a 

feedback system whereby the computation of the 
filter takes place iteratively in step by step manner. 
When the method is applied to the Wiener filter, it 
provides us with an algorithmic solution that allows 
for the tracking of time variations in the signal’s 
statistics without having to solve the Wiener-Hopf 
equations each time the statistics change. 
The Steepest Descent Method is given by [20] 
 

)(
2

1
)()1( MSEkWkW  

 --------------    - (12) 

 

Where   is the step size parameter (commonly it 

is positive constant) and controls the convergence 
characteristics of the algorithm. 
 
The difference between the reference signal d(k) 
and the array output signal y(k) is universally taken 
as error of the adaptive system at that sample and it 
is defined as:   )()()( kykdke   
 
The mean squared error (MSE) is given by [21]: 
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By substituting the gradient of the cost function i.e. 
the mean squared error (MSE) into Eq.12 we come 
up with  
 

          )()()1( xdoptxx rWRkWkW   --- (13) 

 

The computation of matrix associated with the 
Steepest Descent Method is another problem of this 
method. To overcome this difficulty, the LMS 
algorithm replaces the auto-correlation and cross-
correlation by their instantaneous values instead of 
their actual values. Therefore, Eq.13 can be 
rewritten as [20]: 
 

))()()()(()()1( kdkXWkXkXkWkW opt
H  

 

)()()()1( kekXkWkW   ----------------- (14)  

 
 Recursive Least Square (RLS) Algorithm  
 
RLS is a type of non-blind adaptive beamforming 
algorithm that uses the LS method as optimization 
criterion. To make the estimation problem “well-
posed” as well as to track time-varying systems, the 
cost function is defined as [7, 17, 20]. 
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  -----                
    (15)
  

  
 
 
 
 
Where:    k is variable length of the observable data 
               )(ie  is the error function   

               is a positive real number  and it is called             
               the regularization parameter  

 is called the forgetting factor, which is 
a positive constant close to, but less than 
one. It emphasizes past data in a non-
stationary environment so that the 
statistical variations of the data can be 
tracked and not “forgotten”. In a 
stationary environment,   = 1 
corresponds to infinite memory. 

 
The RLS algorithm can be summarized as follows 
[20]: 
 
First initialize the algorithm by setting 
 

IPW 1)0(,0)0(   ------------------     -- (16) 
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I  is NxN identity matrix. 

 )()1()(1

)()1(
)(

1

1

kXkPkX

kXkP
kT H












                    (17)   

 

 )()1()()( kXkWkdke
H

                       
(18) 
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H
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Where:  )(kT  is Nx1 vector and it is called gain  

vector 
 

)(kP  is NxN matrix and it is called 

inverse correlation matrix  
 
 

Constant Modulus Algorithm (CMA) 
 
CMA is from the blind adaptive beamforming 
family which requires no training signal sequence 
to make an optimum beam to the intended 
direction; it would rather try to restore important 
property of the transmitted signal [8, 17, 22].  
 
In most of the communication scenario it is 
common to use modulation techniques with 
constant envelope or amplitude such as FM, FSK, 
PSK, MSK and the like. But in transmitting base 
band signals by using these modulation techniques, 
the transmitted signal encounters channel fading 
which may result both in amplitude and phase 
distortions. The constant envelope/modulus 
property of the above mentioned modulation 
techniques opens a window to the adaptive 
beamforming algorithm in order to use this 
property in the beamforming technology. The 
receiver restores the envelope of the transmitted 
signal by equating the received signal to some 
constant value that corresponds to the envelope of 
the transmitted signal. This is made possible by 
continuously updating the weight of the 
beamformer until the output of the array has the 
same modulus as that of the original transmitted 
signal. The class of adaptive beamforming 
algorithm that uses this phenomenon is known as 
the Constant Modulus Algorithm (CMA). 
 
The cost function used for CMA is given by[8, 17]: 
 





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qp
kyEkJ )()(

---------------- (21) 

 
Where:  p=1, 2 or q=1, 2 and   is the desired 
signal amplitude at the output of the array 

Assuming that  =1, then Eqn. 15 becomes: 
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---------------  (22) 

 
This so-called CMA (p, q) cost function is simply a 
positive measure of the average amount that the 
beamformer output     y (k) deviates from the unit 
modulus condition. The objective is then choosing 
weight vector recursively in order to minimize J 
and consequently it makes y(k) as close to a 
constant modulus signal as possible.  
 
It is not possible to get the closed form of solution 
for the above cost function; rather it is simple to 
use an iterative method to obtain the optimal 
weight vector or the minimum J like in LSM i.e. by 

Sum of Weighted 
Error Squares 
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using Steepest Descent Method. Then, in terms of 
the above cost function, Eq. 12   becomes [8]: 
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------------- (23) 

 
Where:  )(J  is the gradient of the cost function 

of the CMA 
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Further simplification of the above equation 
results:  
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As done for the LMS, we replace the statistical 
expectation with the instantaneous value so that Eq. 
24 becomes [8]: 
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Substituting Eq. 25 into Eq. 23 results in the 
following weight updating equation  
 
    *)
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)()()()1( * kekXkWkW   --------------- (26) 

 
Where:   has similar function as to LMS but we 

choose  1  to get better stability. 

 
Like in the LMS algorithm, the convergence rate 
can be controlled by varying . However, to get 

much better convergence behavior, non-linear least 
square method need to be used.  
 
Least Square Constant Modulus Algorithm (LS-
CMA) 
 
The constant modulus algorithm was first used by 
Gooch [23] in the beamforming problem. After 
that, many CMA-type algorithms have been 
proposed for use in adaptive arrays. Among them 
B. G. Agee [24] developed the LS-CMA by using 
the extension of the method of nonlinear least-
squares (Gauss's method). The extension of Gauss's 
method states that if a cost function can be 
expressed in the form: 
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Where:        )](),...,(),([)( 21 WgWgWgWg K

T

  

then the cost function has a partial Taylor-series 
expansion with sum-of- squares form [8] 
 

2

2
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Where:  
 

d  is an offset vector, and  
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It can be shown that the gradient of )( dWF   

with respect to  d  is given by [8] 
 
  

*
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               dWDWDWgWD H )()()()(2 
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Setting ))(( dWF

d
  equal to zero, the offset that 

minimizes the cost function )( dWF   will be 

   

  )()()()(
1

WgWDWDWDd H 
  ---------- (31) 

 

Adding  d  to W  results in a new weight vector 
that minimizes the cost function. Therefore the 
weight update equation becomes [8, 24]: 
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(32) 

 
Where: l  denotes the iteration number. LS-CMA 

is derived by applying Eq.32 to the constant 
modulus function  
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Comparing Eq.27 with Eq.33, we observe that
  

1)(1)()(  kXWkyWg
H

k
-                 (34) 

 

Then )(Wg becomes 
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The gradient vector of  )(Wgk

 is given by [8] 
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Substituting Eq.36 into Eq.29 results in: 
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Where:   )(),...2(),1( KXXXX   is the input 
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is the output data matrix. Using Eq.34 and Eq.37 
we have:  
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The vectors )(lY  and )(lP  are called the output 

data vector and complex-limited output data vector, 
respectively. Substituting Eq.39 and Eq.40 into 
Eqn.32 we obtain [8]: 
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Where  TH XlWlY )()(   then )(lP = L )(lY .  

 

Note that L )(lY  places a hard limit on )(lY . 

Since the algorithm iterates using a single block of 
K data vectors, [x(k)], it is called static LS - CMA.  
The LS-CMA can be implemented both statically 
and dynamically.  
 
The static LS-CMA repeatedly uses one data block 
X, which contains K snapshots of the input data 

vectors, in the updating of the weight vectorW . In 
the static LS-CMA, after a new weight vector 

)1( lW  is calculated using Eq.41, this new 

weight vector is used with the input data block X, 
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which was also used in the last iteration, to 

generate the new output data vector )1( lY and 

the complex-limited output data vector )1( lP . 

The new complex-limited output data vector is then 
substituted into Eq.40 to generate a new weight 
vector. 
  
In dynamic LS-CMA, however, different input data 
blocks are used during the updating of the weight 

vector. Let  lX denote the input data block used 

in the thl  iteration.  lX can be expressed as [8] 
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Where L is the number of iterations required for the 
algorithm to converge. Using )(lX  we can describe 

the dynamic LS-CMA by the following equations 
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From the above equations we see that while the 
steepest descent CMA updates the weight vector on 
a sample-by-sample basis, the dynamic LS-CMA 
adjusts the weight vector on a block-by-block 
basis. 
 
Finally, the sample mean estimate of the 
correlation matrix of the input data and the cross-
correlation between the input data and the output 
for the block of data available at the lth iteration can 
be constructed as [8]: 
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K
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Where K is the block size.  
 

Then Eq. 45 becomes: 

xdxx rRW



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COMPUTATIONAL COMPLEXITY 
ANALYSIS 

 

Computational complexity can be expressed in 
terms of time and space complexity. But the 
analysis in terms of these two parameters is very 
complex. It is rather better to discuss the 
computational complexity of the above adaptive 
beamforming algorithms in terms of the two 
fundamental mathematical operators (addition and 
multiplication operators) performed per iteration. 
Using the latter concept, the computational 
complexity of the adaptive beamforming 
algorithms studied in this work are summarized in 
the following tables. 
 
Table 1: Computational complexity of SMI  

Algorithm 
 

 
Procedures 
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per iteration 
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iteration 
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Total operation  
K2N+KN+N2+

2 + Matrix 
Inversion 
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Table 2: Computational complexity of LMS 
algorithm 

 
Procedures Multiplication  

per iteration 
Addition  
per 
iteration 

)()()( kXkWky
H

  N N 

)()()( kykdke   - 1 

)()()1( ekXkWkW  
 

N+1 N+1 

Total operation 2N+1 2N+2 
 

 Where: K is length of observable data. 
  N is the number of array elements. 
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Table 3: Computational complexity of RLS   Algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4: Computational complexity of CMA 
 

Procedures Multiplication 
per iteration 
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iteration 
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Table 5: Computational complexity of LS-CMA 

 
From the above computational complexity table, 
the algorithms can be arranged in the order of 
decreasing computational complexity as follows 
SMI, LS-CMA, RLS, LMS and CMA.   
 
To see the performance in terms of convergence 
rate, we need to make simulation for the 
corresponding beamforming algorithms. This is 
presented in the next section with brief discussion 
whenever required. 
 
 

SIMULATION RESULTS 
 

In this section, simulation results of different 
adaptive beamforming algorithms used in this work 
are presented. All the adaptive beamforming 
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In this section, simulation results of different 
adaptive beamforming algorithms used in this work 
are presented. All the adaptive beamforming 
simulations are done for 8 array elements and 5 
users, where one intended user is located at 800 and 
 

the rest four users are interferers which are located 
at 400, 1200, 1600, and 1750. Moreover, on the 
simulation output, the solid line position at 800 
infer to the position of intended user and the 
locations of the asterisks (*) correspond to the 
locations of the interferers.   
 

SMI Algorithm Simulation Results 

 
a) Radiation pattern rectangular plot

b) Radiation pattern rectangular plot in dB 

c) Plot of mean squared error (MSE)

Figure 3 Simulations of Radiation Pattern and MSE, synthesized by using SMI algorithm for SNR=30 dB, and    
               block size=40. 
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The simulation for SMI algorithm is carried out for         
SNR= 30dB, for 10 blocks with block size=40 snap 
shot (samples). As can be seen from the simulation, 
the SMI algorithm converges quickly. 
 
 LMS Algorithm Simulation Results  

 
 

a) Radiation pattern rectangular plot 

 
 

b) Radiation pattern rectangular plot in dB 

             
c) Plot of mean squared error (MSE) 

 
Figure 4 Simulation of radiation pattern and 

MSE,synthesized by using LMS 

algorithm for  =0.0110,SNR=30dB, 
iteration=3000. 

 
 
As can be seen from the simulation results, the 
LMS beamforming algorithm has less convergence 
rate than the SMI beamforming algorithm, but the 
latter one forms much stronger beams only to the 
direction of the intended user. Besides its ability to 
form much stronger beams only to the direction of 
the intended user, it also has less computational 
complexity. Because of these reasons the family of 
LMS beamforming algorithms is preferred over the 
SMI beamforming algorithm to implement in 
existing wireless communication scenario. 
 
 RLS Algorithm Simulation Results 

                   a) Radiation pattern rectangular plot 
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           b) Radiation pattern rectangular plot in dB    

 
             c) Plot of  least squared error (LSE)  
 

Figure 5 Simulation of radiation pattern 
synthesized by using RLS algorithm for 

SNR=30dB,  =0.068,  =1, and 
number of iteration= 3000. 

 
We observe that the convergence of the RLS 
algorithm is better than that of the LMS algorithm, 
but this increase in convergence rate is obtained at 
the cost of increased computational complexity. In 
addition to the good convergence rate, RLS has the 
ability to retain information about the input data 
vector from the very beginning. Another important 
feature of the RLS algorithm is its ability to replace 
the inversion of the covariance matrix in the 
Weiner solution with a simple scalar division 
 
 
 

 
 CMA Simulation Results 
 

                 
a) Radiation pattern rectangular plot 
 

  
b) Radiation pattern rectangular plot in dB 

 
 
c) Plot of mean square error (MSE)   
 

Figure 6 Simulation of radiation pattern and 
MSE,synthesized by using CMA for 
MSK signal with µ= 0.01,SNR=30 
dB,iteration=4000. 
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We observe that the CMA has similar behavior to 
that of SMI but with slow convergence rate. The 
convergence rate can be improved by increasing  

However; care must be taken not to use large value 
of   that renders the algorithm unstable.  

LS-CMA Simulation Results 

 
      a) Radiation pattern rectangular plot 

 
b) Radiation pattern rectangular plot in dB 

 

 
             c) Plot of least square error (LSE)  

 
d)   Partially enlarged view of the error graph 

             shown  in (c) above. 
 
Figure 7  Simulation  of radiation pattern  
 synthesized by using LS-CMA for  
 SNR = 30 dB, block size=120, no. of 

iterations = 7000. 
 
As we can see from the above simulations, the LS-
CMA has improved the performance of the CMA. 
Since the adaptation is made in block form, 
increasing the block size results in an increase of 
the performance of the algorithm.  
 

CONCLUSION 
 
In comparison to the existing wireless 
communication concept which virtually deploys 
fixed spectrum band for different wireless 
technologies, the concept of cognitive radio 
technology is indicative in bringing the wireless 
technology to new era. In this work, the 
performance of different beamforming techniques 
has been investigated. Although smart antennas 
technology has been used in the third generation 
communication, the way it is proposed for 
cognitive radio technology is slightly different 
from the way it is used earlier. The difference is 
mainly from the point of view of side lobes 
requirement. The existing wireless communication 
does not require any side lobe, if possible, whereas 
the cognitive radio technology takes as an 
advantage the generation of side lobes in all 
directions equally except to the direction of 
interferers so as to simplify the spectrum detection 
capability of the system. Therefore, the 
investigations in this work are made from this point 
of view. In accordance to the aforementioned ideas, 
the following conclusions are drawn from this 
work.  
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The investigation of different adaptive 
beamforming algorithms for the cognitive radio 
technology from both blind and non-blind 
algorithms  has shown that the Sample Matrix 
Inversion (SMI) from the non-blind beamforming 
family and the Constant Modulus Algorithm 
(CMA) from the blind beamfoming family have 
better radiation pattern (beam pattern) that suits the 
cognitive radio technology. The others have low 
and dying side lobes and using them for detection 
in CR application could result in the scanned RF 
giving wrong information (false alarm) about the 
vacant and occupied spectrum holes. In comparing 
the overall performance, the SMI is preferred for 
CR applications as compared to the other adaptive 
beamforming algorithms. In fact, it has very fast 
convergence rate of all adaptive beamforming 
algorithms studied in this work which one big 
advantage for the cognitive radio system.   
 
In general, it has been shown that smart antenna 
technology has the potential to be used in the next 
generation communication i.e. in cognitive radio. 
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