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ABSTRACT

In this paper an analysis is developed for the
determination of creep deformation of an

axisymmetric boiler tubes subjected to

axisymmetric loads. The stresses and the
permanent strains at a particular time ay!d at the

steady state condition, resulting from loading of the
tube under constant internal pressure and eleva~ed

temperature are evaluated taking into account the
secondary creep characteristics of a given
material. Finite element solution is presented and

discussed for a class of problems in which no prior

analytical solution may exist. The method of
solution developed is an extension of the direct

stiffness method. The body is replaced by a system

of discrete triangular cross-section ring elements
. interconnected along circu/'/'}ferential nodal circles.
The equations of equilibrium for the element are
derived from the 'principle of minimum potential.

energy. The creep behavior, of the body is
formulated in terms of creep laws in current use.

Starting with the elastic solution of the problem,
creep strains are treated as initial strains to
determine the new stress distributions at the end of

the pre-set time interval. The procedure is repeated
until the final time is reached and/or until the stress
distribzttion reaches a steady stated condition.

Numerical results obtained for a tube material
12CrMoV are presented at the end.

I. The environmental conditions within the boiler
can be highly aggressive and alter the
microstructure of tubing.

Ii. Stresses caused by external loads, or induced
by cold forming operations, uneven cooling or
welding, may substantially lower the resistance
of tubing to be attacked by certain corrosive
media.
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Successful boiler operation involves taking heat
energy in its available form (for example, coal, oil,
etc.) and converting it into a form that can be
conveniently used. This may be done by heating
water in a boiler and then' using the hot water or
steam for a desired purpqse. Boiler tubes may fail
in service condition due to many reasons. Some of
them are tube surface pitting, corrosion cracking,
creep rupture, carbide graphitization, oxidation,
sulfidation, embrittlement, etc. These' conditions
that give rise to early failure of tubes are ·.attributed
to one or a combination of the following reasons
[2,3].

[n]

[<1>]

[u]

[r]

[HI

[k]

[I]

[KI

u

v

Generalized displpcements

Surface areq of an element

Modulus of elasticity

Shear modulus of material

Subscriptsfor unit vectors

Surface force
Pressure

Time

Temperature
Stress

Strain

CoeffiCient of thermal expansion
Poison ratio

[a]
A
E
G

i,j,k
P
P
t

T
(j
•
a
v

Journal of EEA, VoL 22, 2005



46 Chanyalew Taye and Alem Bazezew

During the last hundred years, extensive Te~arches
were carried out and findings were published on
creep mechanics mostly irifluenced.:bY various

.approaches in establishing suitable Constitutive
equations.,.Bailey [I] is the pioneer in presenting a
useful work iQthe study of the design aspect of
creep in 1935. He propOsed a general relationship

. for cri(ep in t~s of principal stresses based on
.~imphi~ension test. The consideration of primary

, creep in the design of internal-pressure vessels was
.. "propOsed by Coffin. et al [4]. They evaluated the

permanent strains and stresses developed in a thick­
walled cylinder at a particular time resulting from
loading under constant internal pressure at elevated
temperature, considering the primary creep
characteristics of the tub<;material. A study on an
axisymmetric method of creep analysis for primary
and secondary creep was also undertaken by Jahed
and Bidabadi [5].

In this paper the analysis of the effect of long-term
overheating known as creep is discussed. A
computation technique is developed for the
evaluation of axisymmetric <;:reepdeformation of
boiler tubes by using the FEM [8]. Long-term
overheating occurs over a period of months or even
years. Boiler tubes commonly fail after many years
of service as a result of creep. Creep is a time­
dependent deformation that occurs when a material
is stressed ~t high temperature over a period of time
with a continued load, in which the material will
eventually rupture. The temperature at which creep
becomes important depends on the particular metal.
For carbon steel, creep rupture becomes a design
consideration at 425°C, for alloy steels at about
480°C and for austenitic stainless steels at about
560°C [I]. Tubes that fail by creep exhibit minimal
swelling and a longitudinal split that is narrow
when compared to short-term overheating [I].

FINITE ELEMENT ANALYSIS

Modeling of the Tube

In order to make analysis of stress and strain under
creep; we consider an axisymmetric hollow circular

cylinder of inner and outer radii a and b,
.respectively, under the following basic assumptions
[9]:

i. radial deformation is small, and the radius of
the deformed cylinder is nearly the same as
that of the un-deformed cylinder;

ii. tube material is homogeneous, isotropic and
incompressible;

iii. all material properties are temperature
dependant;

iv. Prandtl-Reuss work-hardening flow 'rule,
Von Mises yield criterion and Ramberg­
Osgood equations are applicable;

V. the Mises-Mises theory of creep and
Norton's Law for creep are applicable; and

vi. inertial forces and the coupling ~erm in the
governing equations are neglected and
plane-strain condition is valid.

Uniaxial Creep Curves at Constant Stress

It has been determined from experiments that if a
metal which creeps is subjected to a constant
uniaxial stress, and then the accumulation of creep
strains with time has the form illustrated in as

shown by Fig. I [1,4].

D

Figure I Creep curve obtained at constant
temperature under constanUoad

OA - is an instantaneous deformation that occurs
immediately upon application of the load
and may contain both elastic and plastic
deformation.

We can model a boiler tube as a thick-walled

cylinder subjected to internal and/or external
pressure at a temperature in the creep range. For
our analysis, we will consider a normal boiler tube
surface, i.e. surface with no soot or scale deposit
and no crack and scar existing. Then the stresses
and strains due to thermal loading, external load
and creep phenomenon will be determined· by FE
formulation.
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AB - is the primary stage in which the creep is
changing at a decreasing rate as a result of
strain hardening. The deformation is mainly
plastic.

BC - is the secondary steady stale stage in which
the deformation is plastic. In this.stage the
creep rate reaches a minimum and remains
constant as the effect of strain-hardening is
counter balanced by an annealing influence.
Here the creep rate is a function of stress
level and temperature.

.CD .- is the tertiary stage in which the creep
'continues to (ncrease and is also
accompanied by" a reduction in cross­
$ectional q.rea olJd· the onset of necking,
hence increase in necking; thereby, resulting
in fracture.

Derivation of Element Stiffness relation

The method of analysis used in this paper i~ the
direct stiffuess or displacement method. It can best
be described as a variational procedure. In classical
elasticity theory one of the most· widely used
variational principle is the theorem of minimum
potential energy [10]. This theorem states that of all
displacement functions that satisfy the boundary
conditions, the one that satisfies the equilibrium
equation makes the potential energy an absolute
minimum. The direct stiffness method is a
systematic procedure for the application of this
theorem.

In continuum problems: the body is approximated
by a set of simple sub-regions, called finite
elements .. Within each element, the displacements
are assumed to be linear combinations of functions
with undetermined coefficients, and are chosen so
that continuity is preserved along the edges of
adjacent elements. The assumed displacement
functions for any element are related to. the
displacement at some particular points of the
element, which are known as the nodal points of
the element. These nodal points are usually taken
as the comers of the element. The internal strain

energy for each elem~nt of the body is then
expressed m terms of the nodal point
displacements. The potential energy for the
complete body is determined by slImming the strain
energy r for all the elements and subtracting the
work done by the extemalloads.

Finally, minimization of the' potential energy with
respect to the nodal displacements yields the
desired system of equation for detennining the
unkp.own nodal displacements. For programming
and computational reasons, the' method of
constructing the governing equations is to consider
each element'separately. The potential energy for
each element is minimlZed. This gives a system of
equations in terms of the nodal displacements for
that element and the applied forces acting pn the
element. The coefficient matrix for these eqUations
is called the element stiffness matrix, The
governing equations for the body are obtained by
superposition of the element stiffuess matrices
subject to the condition that the displa~t ~
any given node must be the same for all efements
attached to that node. The resulting equations must
satisfy the boundary conditions, and are solved .to­

yield the unknown nodal point displacements. 1'be'
element strains and stresses are then calculated
from the known displacements.

The inclusion of creep behavior in the finite
element approach developed in. this paper is
handled by using an incremental approach anq,
treating the creep strains as initial strains~ The
solution of the problem begins by obtaining the
elastic solution Based on ~ese stresses, the creep
strains for a small time interval are computed.
These are regarded as initial strains for t~ 1le)tt
time interval and are included as fictitious creep
forces at the nodal points in the evaluation of the
nodal displacements and element stresses and
strains. The solution for' the next time increment
prOCeeds in the siune manner. The' basic
assumption used in this approach is that the change
in stress during any time increment is small
compared to the stress at the beginning of that
increment. The error introduced in this procedure
can be made as small as one may wish by reducing
the time increment. .

In applying the direct' stiffuess method, the first
step is to choose a finite element that will be used'
to represent the body. Because of the need of
representing complex geometries for analysis using'
the finite element method, the triangular element
has been used widely. For axisymmetric bodies, the
easiest element to use is a triangular cross-sectional
circular ring. In this paper we use the discretization
shown in Fig. 2.
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Figure 2 Infinite thick-wall tube discritized by triangular element

The choice of the displacement functions for the
element is the prime consideration in the derivation
of the element stiffness matrix: The stiffness
characteristics are completely specified. by the
cHoice of displacements, which directly' influence
the accuracy of the soluti·on. In general, the number
of independent displacement functions to be used
should equal the number of. degrees of nodal point
displacement of the element. The displacement
functions are chosen so as to preserve continuity
between elements, and there by assuring
convergence of the finite element solution to the
exact solution as the number of elements are
increased.

Consider the triangular element as shown in Fig. 3.
The coordinate system for this element is taken as a
cylindrical system with the z-axis coincident with
the axis of symmetry. The simplest way to satisfy
the requirements stated in the preceding paragraph
is to take the displacements as linear functions of
the coordinates, i.e.
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By evaluating Eq. (I) at each of the three vertices
of the triangle, the folloWingrelation is obtained
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The generalized .displacement vector {a} IS now
expressed in terms of the nodal point displacementby inverting Eq. (2), i.e.
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Figure 3 Tfiapgular element
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The strain.:displacemlmt relations in cylindrical
coordinates are giVeJ;lby

energy is the stable equilibrium condition.
Therefore:

The potential energy V for the element under
consideration is:Substituting Eq. (I) into (5) yields

8J=0 (ll)

at

nr J 0 0 0 01

a2

s:: = 0 0 0 0 0 1

I ora3
s' .!.I~OOO a4

B r r
s" 0 0 1 0 1 '0

a,

a6~}= [N]{a}

(6)

For the solution of the creep problem, the strain

{£} is asstUned to be composed ot the elastic
strain, creep strain and thermal strain, i.e.

Substituting Eqs. (9), (6) and (12) into (11) gives

(13)

From equation (7) the elastic strain is given by

Taking variations of Eq. (13) with respect to the

generalized displacements {a} yields the system of
equation

(14)[kRa} = {f}
where , and

{k}= f[NTIDIN]dv•

[aT][k][a]{u}= [aT]{e} or [K·1m] {u'lm} = {F'lm} (15)

where [B]=~[H]au

Thus far the stiffness matrix and load vector which

have been presented are with respect to the
generalized displacements {a}. However, it is more
convenient to work with the nodal displacements
for combining stiffness matrices of adjacent
elements. The nodal displacements are related to
the generalized displacements through Eq. (3).
Substituting Eq. (3) into Eq. (14) and, pre

multiplying by lBT j yields the desired relationship:

Once the element stiffness matrix and load vector
are evaluated, they are assembled into a' set of
2 xnel equations of equilibrium for the body, where
nel=number of nodal points. Equilibrium requires
that all element forces at node i be in equilibrium

(10)

(8)

~ 1[::: 1(9)
1- 2v &.

'--2- &~

v

v

1- v

o

v

v

o

1- v

The stiffness matrix for the element may now be
determined from the theorem of minimtUn potential
energy. The principle states that of all
kinematically admissible configurations, the
deformation producing the minimum total potential

Substituting Eq. (8) into (9) and using the relation
that the creep strains are incompressible yields

The stress-6train relations for an elastic isotropic
materialis [10]
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with the extema~ forces at that node. This is
accomplished by adding, the equations of all
elements associated with the forces .at that point,
I.e.

(16)

Substituting Eq. (15) into (16), and specifying that
the displacement at any given node be the same for
all elements attached to that node, i.e. from
conditions of compatibility,

In general, the effective incremental creep. strai.nJ~
~functioh of the. effective ~stress (T., thetOt8J.

effective' strain e:, the temperature T, the

time t, and the strain history of the.material, i.e.

~e: = I(a,.e; ,T,t)

and Eq. (20b) is the element creep laW,-6filie
material.

{p}= f[KrI~Uurl",} or [KHu}={p}
j:'

(17)
SOLUTION TECHNIQUE

Solution Steps

The incremental stresses are then related to the
elastic strains by the general Hooke's law

The solution of the creep problem begins with ~
assumption that if there is no temperature gradftnt,
the total change in str~ during a time interval is
the sum of the changes in elastic and creep strain,

i.e., {As} = {Asel}+ {Ae' }, thus the change in the
elastic strain is

Imposing the boundary conditions, Eq. (17) is
solved for the unknown displaq:ment

components [u].

Multi-axial Stress-Strain~Time Relationships

In order to determine the multi-axial creep strain at
any point in the body, a stress-strain relation is
needed. The multi-axial creep strains can be
determined based on the assumptions introduced
previously. These assumptions are satisfied by the
stress-strain relationships for a cylindrical
coordinate system with rotatiol'liil symmetry [1]
given by

(21)

(22)

The effective incremental creep strain t.e: is

equivalent to the uniaxial creep strain increment
and is obtained from experiments and given by the
empirical relationship [1]

(23)

(26)

(25)

(2")

{Ao} = [D ]{{As } - {As c }}

{Ae}= [B]{Au}

~£.}= {r(O".,t,r)}

{Auc}= [Kj1[F']

The other field equations are obtained from the
relatiqnship between strain and deformation, the
creep law. of the material, and from the
minimization of the potential energy of the' body.
These equations may be expres~ as

Substituting Eq. (21) into Eq. (22) yields the
relation between the incremental stress, total strain.
and creep strain

To solve the creep problem, first the elastic stresses
. are determined at time t =0: These stresses 'Sie

assumed to rema,in constant during a small time
increment, M. and the incremental creep strains

(20a)

(18)
A C 31'16:olin= --O'n

20',

where the effective stress, ae ' is defined as

a, = ~~(a, -aoY +(ao-a,Y +(a~-O'zY +6~~v2 .
(19)
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Figure 5 Elastic stress distribution

which includes the effect of creep and temperature,
is shown in Figs. 9.
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Figure 4 Elastic 'stress distribution
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and the thermal strains remain more or less
constant as long as there are no temperature and
pressw;e variations. As can easily be noted from
Fig. 7, at an elevated temperature, the strain
component due to creep is more' dominant. While
the tube stretches due to the increase in total strain
the stresses also change. The stress distributions are
changed due to relaxation as shown in Fig. 9.

']1
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0015
E .
E
'" 0.01
T~
r/J 0.005

The loading 'condition considered is:

T = 500·C; P = 10CMPa;

are calculated from Eq. (25). The creep strains are
substituted into Eq. (26) to find the total change of
the nodalp>int displacements. These displacements
are substituted into Eq. (2.4) to determine the tbtal
change in strain. Finally, the incremental :;tresses
are obtained. from Eq. (23) and ate added to the
previous stresses to yield the new stress

distribution {u,.AI}': {aJ+ {f1aJ. As long as the

incremental stresses, {~al}' dre small compared to

the previous stresses, {u,}, no basic assumptions
are violated anq the solution proceeds to the next
time increment using the same procedure .. If,
however, the incremental stress is not small
compared to the previous stresses, the time step can
be repeated with a smaller time increment.

< = Ku;tq

where K = 19.64x 10.••.•, n = 4.4-and q = 1. 0;

2a ='IOOmm, 2b =15Omm;

v =0.33,'£= 207GPa and a =6.2 x 10-6

NUMERICAL EXAMPLE AND DISCUSSION
OF RESULTS

To illustrate the method of solution develope<!.in
the paper, a numerical example is p.resented. The
boiler. tube material is 12CrMoV, [DIN
X22CrV12I] having the following properties:

The stresses and creep strains for the load
cbnditions considered are displayed in the output.
Fig. 4 shows the elastic stress distributions, and we
can see that the FE solution is in agreement with
the analytical solution. Fig. 5 shows the
dependence of the effective strain on time. From
the diagram we can observe clearly when the
effective strain reaches tlte limiting value. For most
boiler tube materiaJs the recommend strain after

10,000 hours of operation is about 1% [4]. Fig.
6 shows the total effective strain distribution for

some selected time values. In Fig. 7 the
Contribution' of the strain. components at the
selected time of 10,000 hours is shown. Fig. 8

shows th~ total strain for a selected radial position

of %= 1.25, and as expected the strains increases
with increasing time. Finally the compariSon of the
'elastic stress and the steady state str~s distribution,
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. CONCLUSION

In this paper we have treated creep problem of
boiler tubes and have developed a finite element
approach to solve the problem: 1n our analysis we
have considered the surface of the tube to be clean

with no crack initiated nor pitting formed on the
surface. The results obtained compare favorably
with the recommend stram values which gives
strain values below 5% for 10000 .hours of

operation.

The method we presented here is..comprehensive:in
the sense that material nonlinearity, loading
nonlinearity and .geometric complexities can easily
be handled as long as the finite element mesh can
be groerated successfully. Since the method makes
it possible to study creep behavior of complex
geometries, the creep analysis of cracked tubes,

corroded or eroded and/or pitted boiler tubes can be
analyzed by developing similar finite element
formul1ition of the problem. If actual boiler tubes
considered, soot deposit, scale formation and
.cracks are cotnmonlyencountered on the surface Qf
.tubes. Transverse and longitudinal cracks and
swelling of tubes due to localized heating are
practically encountered. Thus, we think the method
we proposed in this paper paves the way for further
investigation and research for the cases that maybe
encountered in practice.
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