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Decoupled Lod Flow Technigue

NEWTON-RAPHSON METHOD

Solving a load flow problem means obtain-
ing the solution to a set of non-linear equations.
The Newton-Raphson technique [3], [4],
which is one of the main methods available at
present for solving load flow problems, uses the
first two terms of a Taylor’s series expansion.
This approach transforms the non-linear load
flow equations into a linear form and thus
simplifies the problem., The Newton-Raphson
method solves iteratively an equation of the
type F(x) = 0 which is first expanded about
the point x, as follows:

dF(x,)
F(x) = F(x,) + T fx —x,) +
2
N
2 ax *o/
+o. + higher order terms ... ...
(9)

If X g the initial starting point, is near the
solution point x, then x — x, will be small and
hence second and higher order terms of x — x,

may be negligibe so that F(x} can be approxi-
mated as follows:

F(x) = 0 = Flx,) +

dF(xo)
dx

+

{x—x,) (10)

F(x,)
F(x,)

solving for x, x = x, — a1

After writing a Taylor’s series expansion for
an n variable function and neglecting second and
higher order terms, the approximate solution at
the (n + 1)th iteration becomes

n
x. = X — J F(x.l)
(12)

where |/ | is a matrix of partial derivatives and

is called the Jacobian matrix. Eq. 12 enables us
to find new values of the variables x; iteratively

until two successive values for each x; differ
only hy a specified tolerance. The elements of

the Jacobian matrix can be calculated at the
beginning of each iteration or can be calculated
after a certain number of iterations. It can also
be calculated once and kept constant. When it is
calculated at the beginning of each iteration it is
equivalent to finding the tangent at each point
and as result convergence is quadratic. But
when it is calculated once and kept constant it
is equivalent to using constant slope.

Application to Load Flow

The most popular and successful formu-
lation of the load flow problem is that in which
F is the set of busbar active and reactive power
mismatches (the difference between the
specified and computed values) and the solution
variables are the unknown angle and magnitude
of the busbar voltage. The real and reactive
power mismatches at busbar k are:

sp
APy, =P =V X Vi (G cos O
meh
+ Bkm Siﬂ Ukm}
(13)
sp
AQp= Q@ — Vi 2V, Gy sin 8,

mik

— By cos Opp)
(14)

When Eqs. 13 and 14 are partially differen-
tiated with respect to @ and V, a set of linear
equations can be formed giving the relationship
between small changes in the voltage magnitude
and angle and small changes in real and reactive
power,

- JAP
0 = ap + 220 45+ 282 Ay (15
af ol

.
AAQ | 3AQ

0 =A@ +- v 16
@ Afl By (16)
LIy
where AP = Pk — Pkmk' Vk) ,
sp
AQ= @y, = QP V)
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re-arranging, it can be written in matrix form

AP H N Af
= 17
AQ J L AV '
1%

where H, N, J and L are submatrices of the
Jacobian matrix and are given by

- [-2] 0] - [
1258 ][ 22]

In the Newton-Raphson method Eq. 17 is solved

for Af and —A-g , and hence AV to update f

and V at every iteration till the difference

between &, and 3!- and V:'+1 and VI- are

I+1
within an acceptable tolerance.

It can be shown (refer to Appendix I} that
for a small change in the magnitude of the
busbar voltage the real power at the busbar does
not change appreciably. Similarly for a small
change in the phase angle of the busbar voltage
the reactive power does not change significantly.
Since their elements are very small the coupling
submatrices [N] and [f] can be neglected giving
two decoupled equations.

APl - [H] [4Q] (18)
(4Q] = [L] F@g} (19)

Thus Egs. 18 and 19 result in the method of
decoupling between MW — f and MVAr — V.
Since the actual difference in angle between two
nodes in practical power systems i8 very small,
the following assumptions can be made,

cos akm =1, G, sin Bkm 4 Bkm and

2
8, < B, Vy .

As a result of these assumptions the de-
coupled equations reduce to

(aP] = [V-B - V] (48] (20)
AV
(AQ] = (V-B"-V] i ] (21)
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1. Omitting from [B'] the representation of
those network elements that predominantly
affect MVAr flows, ie., shunt reactances
and off-nominal in phase-transformer taps.

2. Omitting from [B"] the shifting effects of
phase shifters.

3. Taking the left-hand V terms in Eqgs. 20 and
21 on to the left-hand sides of the equations
and in Eq. 20 removing the influence of
MVAr flows on the calculation of [A8] by
setting all the right-hand V terms to 1lp.u,

Thus the final form for the fast-decoupled
load flow equations becomes

AP
(221 - (B (a6 (22)
V
A
[791 - [B"] [AV] (23)
COMPUTATION

Consider the power system shown in Fig. 1,
whose data are tabulated below:

Bus Code Impedance Line Charging
P—g R + jx B
1—2 0.04 + jO.12 j0.03
1—4 0.02 + jO.06 j0.05
1—5 0.08 + j0.24 j0.06
2—4 0.02 + j0.06 j0.05
2—5 0.04 + j0.12 j0.03
3—4 0.06 + jO.18 j0.04
3—5 0.02 + j0.06 j0.05
3—3 - — 70.05

Busbar  Voitage Generation Load
Code  Magnitude MW MVAR MW MVAR

1 - 0 0 25 10
2 — 0 0 40 15
3 — 0 0 50 20
4 1.04 60 35 40 20
5 1.05 0 0 0 0
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The problem now is to calculate the
magnitude and the angle of busbar voltages and
the amount of active and reactive power which
have to be generated by the slack busbar to meet
the load demand and the power losses on the
transmission lines.

First the admittances of the lines are
calculated.

B.75—26.18 —25+71.5 — 5+jb6 —1.25+j3.76
—25 +fib 10 —j29.945 — 5+j1b —25+ 1.5
Yaus = 0 0 6.67—j16.995 — 16T+j5 — 6 +j16
—5 +j15 —H+j15 —1.67+j5 11.67--j34.93 0
|~ 1.25 +3.75 —25+71.6 — 6 +j15 0 875 —j26.18

In the power system shown in Fig. 1, nodes 1,2
and 3 are PQ nodes and nodes 4 and § are PV
nodes. Node 5 is taken as the slack bugbar,

With a flat voltage start, i.e. with 1p.u. at an

angle 0° for all the PQ nodes, P,, P,, P, and P,
are calculated using Eq. 7. Similarly Q,, @,
and @, are calculated using Eq. 8. Then the
active and reactive power mismatches at each
node are determined. If the mismatches are
within the acceptable range, it means that the
magnitudes and angles of the busbar voltages
are obtained and the total power loss and total
generation of the slack busbar can be calculated.
If the mismatches are not within the acceptable
range, the magnitudes and angles of the voltages
at the nodes are updated and the process is
repeated till the mismatches are within the
allowable tolerance.

Starting Values

A theoretical study of the convergence of
the fast decoupled load flow has been published
[5]. This theoretical study gave little numericat
result. It is also impractical to perform the
convergence test stated in the paper before each
load flow study. The intent here is not to

Bus Code Linc Admitlance Line Charging

B2
1—2 2.5 — 7.5 j0.015
1—4 5 — 15 j0.025
1—56 1.25 -~ j3.75 j0.03
2—4 5 — j1b 70.025
2—5 2.5 — ji.b j0.015
3—4 1.67 -- j5.0 j0.02
3—5 5 — jlo j0.025

The admittance matrix is as follows:

analyse theoretically the convergence character-
istic but to look into the practical aspect, i.e.,
fo investigate the convergence of the method
for a defined range of starting values. Normally
starting values for a load flow study are taken as
{1 + jO)p.u. for all the PQ nodes (load nodes).

In this paper tbe range investigated is from
(0.85 + jO)p.u. to (1.5 + jO)p.u. with a step

interval of (0.056 + jO)p.u, All the PQ nodes

are assumed to have the same initial starting
values. Individual starting values for individual
PQ nodes are not investigated because this will
create numerous combinations and also it is
doubtful whether a meaningful conclusion can
be drawn. Finally, a starting value equal to the
slack busbar coltage is also investigated. The
three systems used for testing the starting values
are the ILE.E.E. 14, 30 and 118 busbhars with
21, 43 and 200 branches respectively., The
results are tabulated in Table 1 and convergence
is assumed if mismatch is of the order of
0,1 MW/MAVT.
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Table 1. Numerical Regults

Number of iterations required

Starting
voltage in i for convergence
per unit 14 30 118
Busbars Busbars Busbars
0.85 15 12 7
0.90 15 12 6
0.95 14 12 6
1.00 14 12 6
1.056 13 12 6
1.10 13 12 7
1.15 13 12 7
1.20 12 11 7
1.25 12 11 7
1.30 11 11 7
1.35 11 12 i
1.490 10 12 7
1.45 10 12 7
1.50 9 12 7
V {slack)* 13 12 6

*V (slack) is 1.06 for the 14 and 30 busbars and
0.955 for the 118 husbars system,

Table 1 shows that the fast decoupled load
flow is relatively insensitive to the starting
values, particularly for larger systems. The
normal method of a flat voltage start, ie.,
{1 + j0) p.u. appears to be the best, In the case

of the 14 husbars, 9 iterations are recorded for a
starting value of (1.5 + jO)p.u. However this

appears to be exceptional rather than normal,
For the 118 bhusbar system the number of
iterations for convergence differs little over the
considered range of starting value.

R/X Ratio

The convergence of the fast decoupled
method has been criticised for heing very
sensitive to the R/X ratio of transmission lines.
For large R'X ratio the method becomes un-
reliable.  For large R‘X ratio the method

becomes unreliable. However, for system
control it is necessary to determine a threshold
value of the R/X ratio above which convergence
may not be achieved. It is the intention here to
determine this threshold value.
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One of the proposals [€] to overcome
fransmission lines with large R/X ratio is to
create a Tlictitious node in the middle of the
branch and thus divide the branch into two
sections. One branch will have a resistance equal
to the resistance of the original branch and a
reactance equal to the amount which gives the
desired R/X ratio. The other branch will be
with zero resistance and a reactance value which
when added to the reactance of the other branch
gives the reactance of the original branch., The
result is such that one branch has zero R/X
ratio and the other has a R/X ratio of the
desired value.

Table 2 shows the results of computation
carried out on the three I.E.E.E. systems already
indicated. For each system the heavily loaded
{H) mediumly loaded (M) and tightly loaded
(L) lines are considered. ¥ represents failure
to converge after 100 iterations and D represents
divergence.

The results of Table 2 shows that the con-
vergence characteristic is very sensitive to R/X
ratio, particularly for larger systems. A further
test is performed on the three LE.E.E. systems
with step increment of R/X ratio of 0.1 for the
mediumly Icaded line and the result is given in
Table 3.

Table 3. Convergence Characteristics

R Number of iterations required

= for_convergence

X 14 30 118

ratio Busbars Busbars Busbars

0.5 14 12 6
0.6 14 12 7
0.7 14 12 8
0.8 14 12 10
0.9 14 12 13
1.0 14 17 19
1.1 18 28 32
1.2 31 79 F
1.3 F F —
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A careful study of Table 2 and Table 3
indicates that the threshold level for the R/X
ratic is unity, This is in fact smaller than what
was originally expected. A random check of
the convergence charactenstic for R/X ratio
less than 0.5 appears to produce no improve-
ment as far as the number of iterations is
concerned. It now appears that for the method
to produce a reliable and fast solution the R/X
ratio should be approximately 0.6. Solution
can still be obtained with R/X ratio upto 0.9
hut at the expense of computiing time, For
R/X ratio of unity or greater convergence can
no longer be guaranteed.

CONCLUSION

The convergence characteristic of the fast
decoupled load flow is unaffected by the start-
ing voltage. Thus the flat volt~ce start, that is,
1.0 p.u. volt for the load nodes and zero degree

for all the angles is a good starting point in the
fast decoupled ioad flow solution. However,
the method is very sensitive to the K/X ratio of
transmission lines. Irrespective of the size of
the system an R/X ratio of unity may lead to a
large number of iterations before convergency

can be achieved, or sometimes results even in
divergence. This is particularly pronounced in
large systems. It is recommended that input
data to the algorithm should be screened so as
to avoid R/X ratio of 0.9 or greater. The
creation of a fictitious node as described in the
previous section can he employed so as tn
restore the reliability of the method.

Appendix 1

A simple transmission link and its phasor
diagram are shown in Fig. 2 and Fig. 3 [7]

From the phasor diagram
E* = (V+AV) + (V)

=(V+IR cos¢ +IX sin &)

+(IX cos ¢ — IR sin ¢)*

v V 1’4 1%
- Ay = RE_* XQ

V
and 8V = L _RQ

For most transmission lines X ® R and hence
XP—RQ
—_—

oV = P
1’4
and RP + X
+
AV ) ____{;—Q CEQ

but for small angles & V = fa P

i.e. the flow of power between two nodes is
determined largely by the transmission angle
and the flow of reactive power is determined
by the scalar voltage difference between two
nodes.

In transmission lines in-phase-transformer
taps do not change the transmission angle and
hence do not affect the flow of active power,
and phase shifters do not change the magnitude
of the voliage and as a result do not affect the
flow of reactive power.

Table 2. Convergence Characteristics

R Number of iterations required

X for convergence

Ratio 14 Busharg 30 Bushars 118 Bushars
L M H L. M H L M H

0.5 14 14 14 12 12 12 6 6 1
1.0 14 14 14 26 17 13 27 256 D
15 F F F D F F DD -
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