BENDING MOMENT AND SHEAR FORCE COEFFICIENTS FOR TRAPEZOIDAL AND TRIANGULAR LOADS

Bekele Mrkonnen
Hoded. Architrctural and Fngineering Tepartment
Fuhopian Euilding Construction Authority Ministry of Construction, Addis Naba

INTRODUCTION

Ethopian Standand Code of Practice (ESCP 2 1983) stipulates rules for the transfer of loads from two-w iy ilabs to the sitpportiner beams that result in perarally unstrmemetrial trius\%oidal and trimgulat loads on the turams.

Furthermore, in rerognition of the fact that it would be too cunsernome to drad with sueth loads: it gives corfficients to compert the antual loads into equivalrnt uni forn loals.

This terchical nute griwes the derivation of the approxithate "quations and the" maximum percerntarnerrois that miliy berexpected.

SHEAR FORCE AND POSITIVE MOMENT COEFFICIENTS

Referring to liy. 1 , which shows the shear forme and bending moment diacrams dur to an une mometrical Itaperzoidal load on a simph suphorted heith, the exact sluear or support fraction and the maximum positiar momula may be whained la dementary theory is follows:

Exact Coefficients

Shear troces

$$
\begin{align*}
& r_{1}=R_{1} \quad \text { (I }-\frac{2}{3} \alpha \underset{2}{\alpha} q_{i} L+\frac{2}{3} \beta \frac{\beta}{2} g L \\
& +0 . j(1-\alpha+\beta)\left(1-\alpha-\beta M_{f} L\right. \\
& \left.=\frac{q L}{\underline{2}}: 1-\alpha+\left(\underline{\alpha}-\frac{\beta^{2}}{3}\right)\right\} \tag{1}\\
& F_{2}-R_{2} \quad \frac{\mu^{2}}{2}\left\{I-\mu+\left(\beta^{2} \frac{\left.a^{2}\right)}{3}\right\}(2)\right. \\
& V_{3}=\frac{q L}{\underline{2}}+1-2 \alpha+\left(\alpha^{2}-\frac{p^{2}}{3}\right) ? \tag{3}
\end{align*}
$$

The terms in hrackets, in Py. (I) and Eif. (B). are the exact end shar forer or support reation corlficients.

Maximum Positive Bending Woment

'The urea of the shear foree diagram Inetween the selected points shown in Fig. 1 is calculated first:

$$
\begin{align*}
& 1_{1}-\frac{3}{3} \frac{\alpha}{2} \alpha,=\frac{\alpha^{2}}{3} q L^{2} \tag{4}\\
& A_{2}=\alpha L\left\{1-2 \alpha+\left(\frac{\alpha^{2} \beta}{3}\right)\right\} \frac{4 L^{2}}{2} \\
& =\frac{q L^{2}}{2}\left\{\alpha-2 \alpha^{2}+\alpha \frac{\left(\alpha^{2}-\beta^{2}\right)}{3}\right\} \tag{5}\\
& \begin{array}{l}
3 \\
\frac{1^{-2}}{34} \\
24
\end{array} \\
& =\frac{q I^{2}}{8}\left[1-2 \alpha+\left(\frac{\alpha^{2}-\beta^{2}}{3}\right)\right\}^{2} \tag{6}\\
& H_{\max }=A_{1}+A_{3}+A_{3} \\
& =\frac{q L^{2}}{8}-\left\{\frac{8}{3} \alpha^{2}+1 \alpha\left(1-2 \alpha+\frac{\alpha^{2}-\beta^{2}}{3}\right)\right. \\
& +\left(1-2 \alpha+\frac{\alpha^{2}-\beta^{2}}{3}\right)^{2} j \\
& \frac{4 L^{2}}{8}\left]-\frac{4}{3} \alpha^{2}+\frac{3}{3}\left(\alpha^{2}-\beta^{2}\right)\right. \\
& \left.+\frac{1}{9}\left(a^{2}-\beta^{2}\right)^{2}\right\} \tag{7}
\end{align*}
$$

The torme in brackets, in Eq. (a), are the exact pasition monnent corffiefors.

Approximate (iofficients

Hephacinge the unsammetrical trarmzoidal load by a symurtrical man fiving the same lotal loan, the masimmon load intensity will remain als q and the lrmath of the trianuar loads at the rends will by given $\ln \left(\frac{\alpha+\beta}{\underline{2}}\right) L$

Shear Coefficients

$$
\begin{equation*}
\text { Let } \eta=\left(\frac{\alpha+\beta}{2}\right) \tag{8}
\end{equation*}
$$

The exact end shear or support reaction coefficient for support 1 is obtained from Eq. (1) as:

$$
\begin{equation*}
k_{v}=1-\eta+\frac{(\alpha-\beta)}{2}\left(1-\frac{4 \eta}{3}\right) \tag{9}
\end{equation*}
$$

Neqlecting the last term would give a maximum error of approximately $\pm 7 \%$. We therefore obtain:

$$
\begin{equation*}
k_{v} \approx 1-\eta \tag{10}
\end{equation*}
$$

Maximum Positive Homent Coefficients

Using only the first two terms of the exact moment coefficient in Eq . (7), hut replacing α by η as done above for shear,

$$
\begin{equation*}
k_{m} \approx 1-\frac{4}{3} \eta^{2} \tag{11}
\end{equation*}
$$

Simplifying Eq. (7) for direct comparison with Ef. (11),

$$
\begin{equation*}
k_{m}=\left(1-\frac{4}{3} \eta^{2}\right)\left\{1-\frac{(\alpha-\beta)^{2}}{3}\right\} \tag{12}
\end{equation*}
$$

It is apparent that the approximate coefficient is very nearly equal to the exact one and always on the conservative side.

The maximum error in use of Eq. (11) is obtained when $(\alpha-\beta)=0.2$ as $+1.35 \%$.

Negative moment coefficients

Using the above approach, it can be shown that the approximate negative moment coefficient may be obtained as:

$$
\begin{equation*}
k_{m} \approx 1-2 \eta^{3}+\eta^{3} \tag{13}
\end{equation*}
$$

However, the code recommends the use of Eq. (11) for both positive and negative moment.

This has been recommended in the interest of simplicity and may be justified as follows:

Using Eq. (13) for calculation of support moments in a continuous beam would mean a slight decrease compared to using Eq. (11), but as the simple span moment and, subsequently, the net positive moment should be obtained using Eq. (11), the recommenrlation of applying the positive moment coefficient simply amounts to an upward redistribution of support
moments with an automatic downward correction of span moments.

On the other hand, if the negative moment coeflicient were to be applied throughout, the correct supports moments would be obtained but the span moments would be underestimated.

Finally, it may be remarked that, since the values of k_{m} obtained from Eq. (11) and (13) are quite close, (maximum difference about 7%) the rotational capacity at the support required for the above mentioned redistribution is always available.

Fig. 1 Shear Force and Bending Moment Diagrams due to Unsymmetrical Trapezoidal Load

