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ABSTRACT 

On-line tool wear monitoring plays a significant role 
in industrial automation for higher productivity and 
product quality. In addition, an intelligent system is 
required to make a timely decision for tool change in 
machining systems in order to avoid the subsequent 
consequences on the dimensional accuracy and 
surface finish of the product. The present study deals 
with developing an intelligent system using Artificial 
Neural Network (ANN) to monitor and estimate the 
tool wear in face milling operation using Acoustic 
Emission (AE) and cutting force sensor signals. This 
Paper also highlights the significance of multi 
sensory information fusion for effective tool wear 
estimation by using ANN. Further, it provides a 
sequential approach to minimize the error in tool 
wear estimation by illustrating the influence of ANN 
parameter~. stopping criterion, modes of training the 
network, adaptation of learning rate parameter using 
fuzzy logi,c and population size on wear estimation. 

Keywords: Monitoring, Tool Wear, Face Milling, 
Cutting Force, Acoustic Emission, Sensor Fusion, 
Artificial Neural Networks. 

INTRODUCTION 

Over the past two decades, the manufacturing 
industry has felt the need for more comprehensive 
automatic control of the machining processes, owing 
to the increased global competition and the potential 
economic benefits of automation like reducing the 
labor cost, avoiding the personal oversight, 
enhancing the flexibility, reliability, productivity and 
quality of the products produced. 

Monitoring the automated system has become 
mandatory, especially in the field of wearing of the 
cutting tool, negligence of which would cause 
breakdown resulting in extensive damages to 
machinery and work pieces [21]. In addition to that, 
the downtime associated with the unpredicted tool 
wear is expensive, in terms of time and financial cost. 

Therefore, it is important to evaluate the status of the 
cutting tool throughout the machining process. This 
can be achieved by using on-line sensors such as AE, 
cutting force, temperature etc [I] and by estimating 
the tool wear usingan intelligent system. 

A single sensor may not be efficient in stating the 
wear progression under varying cutting conditions 
and may not be sensitive to phenomena occurring 
over the entire life of the tool. But, the reliability can 
be improved by fusing the information from multiple 
sensors. 

The function of the intelligent system is to analyze 
the information provided by the sensors and to 
estimate the tool wear. It is difficult to obtain 
analytical models to estimate the tool wear since 
complex phenomena occurs during the machining 
process. ANN, the most prominent tool of artificial 
intelligence, bas become widely acknowledged as the 
best possible tool for assessing the stochastic 
machining processes since it posses a number of 
properties for modelling processes: such as universal 
function approximation capability, learning from 
experimental data, tolerance to noisy or missing data, 
and good generalization capability. 

In this work, an intelligent system has been 
developed by using Multiple Layer Perceptron 
(MLP), the most popular model of ANN, to estimate 
the tool wear in face milling operation by fusing 
cutting force and AE parameters. 

LITERATURE SURVEY 

Many researchers have used single sensory data fused 
along with cutting parameters for the purpose of 
identification of tool status. In [7], cutting force was 
used as input to MLP along with the cutting condition 
parameters to classify the tool status. Tue same 
approach was followed 'by [14] for tool wear 
monitoring in end milling operation. Similarly, [21] 
used AE to monitor the tool in face milling operation. 
However, single sensory information often remains 
unreliable and tool condition monitoring may fail to 
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recognize the very complex nature of the cutting 
process. 

Many literatures emphasize on multisensory 
information fusion In [ 17), MLP was used to fuse 
static force data with speed, feed and depth of cut 
parameters for the estimation of flank wear and 
surface finish of the product during lathe operation. 
Also, [3) reported in their review that force and AE 
signal were most widely used sensory signals for the 
purpose of fusion and tool status evaluation. Io (8), 
the authors used AE and Force data to estimate the 
wear in face milling operation. In [9], vibration and 
cutting force signals of milling process were fused by 
using MLP which obtained 97% success in 
identifying the tool wear state. In [18), AE and 
cutting force signals were fused through MLP and 
was observed a high success rate of 95% for tool 
wear recognition under a range of process conditions 
during turning operation. 

Though a number of researchers have used MLP for 
fusing the information and estimating the tool status, 
enough literatures are not available to state the 
influence of neural network parameters which may 
affect the accurate estimation of the tool status. This 
point also has been emphasized in [4], where the 
authors stated that the parameters of the network had 
to be carefully selected for the precise output of the 
network. 

So, the main objective of this work is to arrive at a 
network with best possible error minimization 
capability in estimating the tool wear using the 
multisensory data. Further, this paper provides a 
specific methodology, by which one could arrive at 
an optimal neural network model and thereby could 
achieve good performance. These provide a ·good 
scope for the present study. 

ARTIF1CIAL NElJRAL NETWORK 

New approaches and techniques are continuously and 
rapidly being introduced and adopted in the current 
manufacturing environment. Currently, there has 
been an explosion of interest in applying ANN to the 
manufacturing field. ANN has several advantages 
that are desired in manufacturing practice, including 
learning and adapting ability, parallel distributed 
computation, robustness, etc. There is an expectation 
that ANN techniques can lead to the realization of 
truly intelligent manufacturing system. This is due to 
the fact that their properties of learning and nonlinear 
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behavior make them useful to model complex 
nonlinear processes, better than the a'!_a1ytical 
methods. 

Io this paper, MLP trained using Back Propagation 
Algorithm (BP A) has been chosen on account of it's 
capability to solve nonlinear complex problems. 

Fig. I shows the general architecture of 3-Jayered 
MLP. MLP became popular among researchers and 
users of neural networks after the development of 
BP A for training the network in a supervised manner. 
Supervised learning requires a 'teacher' that knows 
the correct output for any input. 

BPA is a steepest-descent method, where weight 
values are adjusted in an iterative fashion ,while 
moving along the error surface to arrive at minimal. 
range of error, when input patterns are presented to 
the network for learning the environment. The 
learning process consists of two passes , through 
different layers of the network: a forward pass and a 
backward pass. In the forward pass, the input pattern 
is applied to the nodes of the input layer and its effect 
propagates through the network, layer by layer. 
During the forward pass, synaptic weights are all 
fixed. The error which is the difference between the 
actual output of the network and the desired output is 
propagated back during the backward pass to adapt 
the synaptic weights according to the following 
equations I and 2. 

Where 

11-{n + l)~w(n)+ ti.w(n) 

ti.1\{n)~-17 • BE(n) + µ• ti.11-{n -1) 
aw 

T\ - learning rate parameter (0 < T\ :<; 1) 

µ - momentum factor (0 '.5: µ <I) 

(I) 

(2) 

ti.w(n-1) - Correction applied to weight vector 

11-{n-J)at (n-l)'h epoch. 

ti.w(n) - Correction applied to weight vector 11-{n) at 

n~ epoch. 

11-{n)- Weight vector between the nodes at n'' epoch. 

11-{n + 1)- New weight vector between the nodes at 

(n +I)~ epoch. 

E(n) - Sum of squared error of the network at n'h 

epoch. 
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The weights are continuously updated every time the 
input patterns are presented to the network and this 
process continues till the actual output of the network 
comes closer to the desired output (presenting all the 
patterns of the training set to the network once 
constitutes an epoch) [5]. Detailed algorithm is 
available in [5]. 
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Figure I Architecll!fe of multiple layer perception 

EXPERIMENTAL DETAILS 

Face milling ttials on C60 steel workpiece have been 
carried out in Fritz Werner vertical milling machine 
using TiN .coated K20 cemented carbide tool inserts 
to monitor the tool wear. 

In the early research, tool wear was measnred off-line 
nsing microscope and later on using tool-maker's 
microscope. Since this leads to frequent interruption 
of the machining process, on-line monitoring of tool 
wear came into practice. On-line tool wear sensing 
techniques are broadly classified into direct and 
indirect methods. Direct methods such as Radioactive 
technique. Optical measurement, etc are to measure 
the actual wear of the tool while the indirect methods 
like cutting force, AE, etc are to measure parameters 
which are indirectly related with tool wear by tapping 
information from the workpiece by fixing sensors 
through suitable fixtures. 

In this work, AE and Force sensors have been used to 
get on-line indirect measurements about the tool 
wear. However, to relate the sensor values to the 

actual wear, axial flank wear has also been measured 
off-line at regular intervals by interrupting the 
machining process. However, it is difficult to obtain 
analytical model by relating the sensor values and the 
axial flank wear to estimate the tool wear since 
complex phenomena occurs during the machining 
process. The actual relationship between the 
measured sensor values and flank wear can be 
obtained from ANN model at the end of the training 
process. 

Cutting Force Components: A 3-cornponent 
piezoelecttic crystal type dynarnometer (Kistler type 
9265A) has been used along with charge amplifiers 
to meii.sure cutting force components i.e., main 
cutting ( F, ) , feed ( F, ) and axial ( F, ) force 

components (Calibrated range: F, , F,: 0-15 KN, 

F,: 0-30 KN) 

The charge amplifier type 5007 converts the charge 
yielded by the piezoelectric transducers (Transducer 
Sensitivity: 0.1-11000 pCIM.U) into proportional 
electtic signals which are displayed on the indicators. 

Acoustic Emission Signal: AE signal is widely used 
in many applications as an automatic diagnostic 
process indicator. It is an active sensory data and is 
responsive for changes in material behavior such as 
deformation, crack initiation, crack propagation and 
chipping. Such changes in material behavior will 
affect the cutting process and hence the wear. So, one 
can use such signal for continuous monitoring of the 
tool wear status indirectly. Some characteristic 
features such as Ringdown Count (number of times 
the signal amplitude crosses a pre-set reference 
threshold), Rise Time (time taken to reach peak 
amplitude from the first threshold crossing of the 
signal), Event (microstructural displacement that 
produces elastic waves in a material under load or 
stress), Event Duration (time taken from the first to 
the last threshold crossing), Energy (energy of AE) 
have been collected to represent AE in this work. 

In this work, piezoelectric sensor (JOO KHz - 2 MHz 
range) has been used to acquire AE. Electtical signal 
from the sensor is of low amplitude and high 
frequency content. So, it must be first amplified with 
a low noise pre-amplifier and unnecessary 
frequencies must be filtered out prior to processing. 
The AE has been preamplified to a gain of 60 dB. 
The amplified signal then processed through AET 
5500 system The AET 5500 is a computer-based 
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general-purpose AE monitoring system comprising of 
a signal processing unit, an intelligent graphics 
display terminal and a 30 KHz - 2 MHz bandpass 
filter. 

Flank Wear Characteristics: During machining, 
TiN coated carbide inserts undergo certain dynamic 
changes such as deformation of coating material, 
formation of ledge over the rake face and 
continuously changing wedge geometry, which 
influence the nature of machining. Typical flank wear 
characteristics of coated carbide when machining the 
steel workpiece is illustrated in Fig 2. It is seen that 
the coated carbide experienced rapid tool wear (up to 
a flank wear land of 0.11 Smm), followed by a slow 
propagating wear region (0.115 mm - 0.18 mm), 
beyond which there is a further rise in the 
propagation rate. 

Cutting speed : 87.9 m/min 
Feed ; 40 mm/min 
Depth of cut : 0.4 mm 

o.o 30.0 60.0 90.0 120.0 
Cutting Ume (mlns) 

Figure 2 Flank wear characteristics 

Observations of Cutting Force Components: The 
effect of flank wear on cutting force components is 
illustrated in Fig.3. The dynamic behavior of the 
coating results in a steadily increasing Fz component 
of the cutting force superimposed with number of 
spikes. The spikes are attributed to deformation of the 
coating influencing the cutting wedge geometry and 
consequently the cutting force. 
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~ F,. Main cutting force 
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.............. l'S Axial force 
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Figure 3 Effect of flank wear on cutting force 
components 

Observations of AE Parameters: The effect of 
flank wear on one of the typical AE parameter such 
as Ringdown Connt is shown in Fig.4. An interesting 
observation is that they show three distinct zones 
indicating possible correlation between the flank 
wear and AE parameter. With fresh tooL during the 
early phase of machining, the coating defonns due to 
indenting action of the chip-curl over the rake face; 
this results in displacement of coating material over 
the flank portion as well and thereby resulting in 
more negative wedge geometry of the cutting nose. 
This is associated .with production of shorter 
segmental chips. Accordingly, burst type of AE 
occurs. The recorded observation of low order 

o. 0 0. 8 o. 5 0.23 o. 0 
F1ank wear (mm) 

Figure 4 Effect of flank wear on AE parameter 
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AE signal parameter during this phase of machining 
illustrates the occmrence of burst type emission. As 
machining progresses, continuous sliding of the chip 
over the rake face induces formation of a ledge over 
the rake face [10]; this facilitates improved 
machining and also steadier/slow propagating flank 
wear. This is associated with continuous AE signal as 
indicated by higher order magnitude. 

Also, with the final phase of the tool wear, the tool
work interface experiences more/intense sliding due 
to wider flank land. Tiris sliding action results in 
continuous mode of AE as illustrated by the higher 
order AE signal parameter. 

Accordingly, during the early phase of tool life, burst 
type emission has been observed; while in the middle 
phase of tool wear, continuous emission associated 
with increasing order magnitude of AE signal 
parameter has been observed. Further, increase in the 
magnitude of AE signal characteristics during the 
final phase of tool wear can be attributed to intense 
rubbing of flank wear over the just machined work 
surface. 

ANN MODEL DEVELOPMENT 

A sequential approach is adopted in this work for 
evaluating the effects of some of the influencing 
factors of MLP on tool wear estimation and the best 
approach is suggested for the precise estimation of 
tool flank wear using fused data through MLP trained 
using BPA. The following are the steps followed to 
build the ANN model. 

Step I: Selecting Representative Patterns 

Data acquired through sensors during machining ( 5 
AE parameters and 3 force components) are normally 
highly vanant due to the stochastic nature of the tool
wear process. 

Figures illustrates the variance of fused data for 
different flank wear values. It is seen that as tool 
wear progresses, there is a reduction in variance; this 
indicates that as tool wear progresses, the cutting 
performance becomes relatively more stable and 
good; however, with higher wear values, there is 
ag~in a rise in variance due to the dominant rubbing 
action. 
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0.00 "" ""'l""fTT 0.0 0.1 ... "'0.2 .... "' 0.3 
Flank wear {mm} 

Figure 5 Variance of fused data 

For proper training of MLP and to achieve the 
desired performance, it is necessary to input data with 
higher order variance among the acquired during 
training [6], [15]. Usually, this may work out to 50-
70% of the acquired data [22]. In the present study, 
60% of the data of relatively higher order variance is 
used during training and the trained network is tested 
with all 100% of data acquired. Though 60% of the 
testing data is redundant, it is useful to know the 
deviation of estimated characteristics from 
experimental tool wear characteristics. In other 
words, testing with l 00% of the patterns will be 
helpful to know the training accuracy (due to 60% of 
the patterns drawn from the original training set) and 
generalization accuracy (due to 40% of the patterns 
drawn from outside the training set but from the same 
distribution function) [ l l]. The variance of data has 
been calculated as follows: 

"' A;;L;(cxpj -x1)2!0'J) 1,;,p,;,P (3) 
i""l 

2 1 • ~( - )' Oj =- L,. Xpj - Xj 
p j=l 

Where 
nl ; number of input features 
P ; number of input patterns 

; J = mean of j th feature 

A; =maximum variance of }th pattern 

2 . . th 
a 1 =variance of J feature 

x Pi ; j<h feature of pth pattern 

(4) 
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Step 2: Normalization 

Scale down the feature values between 0 and I. 

Step 3: Basic Approach 

It involves selection of the number of hidden layers, 
number of input, hidden and output nodes, T] and µ 
factor for the minimization of testing error of the 
network. 

It has been proved that only one hidden layer is 
enough to approximate any continuous function [2]. 
So, a single hidden layer is used in this work. 

The nodes in the input and output layers are 
ascertained by the number of independent and 
dependent features of the collected data respectively. 
In the present work, the number of input nodes equals 
8 (5 AE and 3 force components) with single output 
node (to estimate the flank wear). 

For good performance of the network, it is necessary 
to achieve not only higher order training accuracy but 
also to achieve satisfactory generalization accuracy. 
While training accuracy calls for as large a number of 
hidden nodes as possible, generalization accuracy 
may suffer due to overtraining. Hence, it is necessary 
to either prune or grow the network and arrive at an 
adequate number of hidden nodes [ 11]. In MLP, 

number of hidden nodes, TJ and µ can only be fixed 
through a laborious training effort. 

To understand the influence of the number of hidden 
nodes on testing error, the network has been trained 
and tested for 1 to 20 number of hidden nodes and the 
sample results pertaining to the combinations of T] = 

{0.9) and µ = {0.6) are shown in the following 

figures 6a and 6b and in Table. I. Training process is 
stopped when the mean squared error of the network 
reached a value of 6.6 x 1 o·'. Minimum testing error 
is considered as the criterion for the selection of 
network configuration and parameters. 
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Figure 6a Effect of hidden nodes on number of 
epochs 

It is seen that with increase in number of hidden 
nodes, i.e., as the network grows, it exhibits 
oscillatory performance characteristics (Fig 6b ). 
Based on the above results, it is better to select a 
single hidden node as it yields minimum tesa'.ng error 
compared to other hidden node configurations. 

2.BE-004 

~2.4E-OCM 

J • • "L9E-004 
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15 23 
Number of hidden nodes 

Figure 6b Effect of hidden nodes on testing error 

f fhidde Tab e 1: Effect o number o n nodes on testiru?: error 
Tj=0.9, µ =0.6 T] =0.5, µ =0.6 

Number Number Testing Number Testing 
hidden of epochs error of epochs error 
nodes (x lff4) (x 104) 

1 3527 1.64912 6250 1.64718 
2 1216 2.61074 2198 2.60509 
3 1502 2.10025 2792 2.08824 
4 1030 2.60612 1855 2.60194 
5 1799 2.22814 3270 2.21722 
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Generally, as the network learns the enviroornen~ i.e., as 
the process of modeling progresses, weights are 
continuously updated This updating is mostly dependent 
on 11 and µ paramelers. Table.2 shows the significance of 

different network paramelers on testing error. According to 
the minimum testing error criterion, 0.1 and 0. 7 values are 
selected for 11 and µ respectively. 

Table 2: Effect of network parameters on testing error 

Leaming rate Mornentu Number of Testing error 
parameter, ,, rn, µ epochs (x 104) 

0.9 0.7 2632 1.64920 
0.8 0.7 2950 1.64877 
0.7 0.7 3360 1.64829 
0.6 0.7 3907 1.64781 
0.5 0.7 4675 1.64723 
0.4 0.7 5829 1.64659 
0.3 0.7 7754 1.64591 
0.2 0.7 11606 1.64521 
0.1 0.7 23167 1.64447 

Step 4: Modified Approach 

A network after good training might have acquired the best 
possible memorization capability; however, it may not be 
able to generaliz.e, especially when the training process is 
stopped during the overfitting period Hence, it is 
necessary to find a proper Stopping Criterion (SC) 
which would ensure a network having good 
generalization and adequate memorization capability 
(20] followed a method to ascertain the overfilling 
point during training by evaluating the performance 
of the network with validation patterns. In the present 
study, 40% of the patterns are used for validation. 
When the error during validation goes up, overfitting 
is said to begin and the weights corresponding to the 
lowest validation error can be the optimum set of 
weights for the given data set. So, in this work, a 
small error threshold of value 6.6 x I 0-5 along with 
minimum validation error forms the hybrid criterion 
for stopping the training process. So, the network is 
trained until its output converged to the point defined 
by the SC. The training and validation error 
characteristics while implementing the SC is 
illustrated in Fig.7. Epoch 141 and 1162 correspond 
to the point at which validation error reached 
minimum and peak value respectively. The 
corresponding testing errors are shown in Table.3. 
Testing errors pinpoint the consequence of 
inadequate training which may lead to training 
inacc~cy and the danger of stopping the training 

process at an irrelevant point. Also, it is clear from 
Table.3 that stopping at 23167"' epoch with respect to 
SC is better with respect to validation and testing 
error when compared to the other two epochs. 

lO ~ 
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' ' ' 
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11.:D.i 
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" --- ... 

10~.,....,~~~~...,,~~..,,.,-~...,.,... 
l 10 10 Iii - 10 I 10 4 

Number ol epochs 

Figure 7 Training and validation error characteristics 

Table 3: Network Performance While Incorporating SC 

Epoch Training Validation Testing 
error (x IO°') error (x 104) error(x lff4) 

141 9.0253 3.3864 6.7698 
1162 1.6018 1.0613 5.20638 

23167 0.6667 3.1112 1.6445 

Step 5: Training Mode 

Influence of training modes on tool wear estimation 
is presented in this section. There are two approaches 
for training the network; one is based on continuous 
weight updation, while the other is based on Periodic 
Weight Updation (PWU). In continuous weight 
updation, the weights are updated after each training 
pattern presented to the network, while in PWU, the 
weights are updated only once an epoch, after all the 
training patterns are presented to the network. The 
results pertaining to the PWU along with SC, is 
shown in the Table. 4. There is an improvement 
compared to the modified approach which is explained in 
step 4. 

Step 6: Adaptation of Learning Rate Parameter 
Using Fuzzy Logic 

The value of 11 determines the step length when it moves 

along the error surface. Since, different regions of the error 
surfuce may have different characteristic gradients, it is 
preferable to dynamically change the parameter based on 
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the nature of the surface. Fuzzy logic can also be used to 
determine 11 dynamically since fi=y reasoning provides a 

way to inteipolate between the emr difference and 11 · In 

[12], fi=y logic was employed to determine µ, 11 and 

steepness of activatioo function to improve the speed of 
learning. In the present study, fi=y logic has been 
employed for T] adaptation to improve the perlilnnance of 

the network 

Generally, fi=y algoritlnn consists of (a) fuzzificatioo, 
which converts the measured values into lingoistics values, 
(b) a knowledge base, v.lrich is a set of lingoistic cootrol 
rules, ( c) ao inference mechanism which performs fi=y 
reasoning of the lingoistic rules and ( d) defuzzification 
[19]. 

The fi=y logic inference mechanism results in a fi=y 
value. In order to generate a crisp ou1pu~ defuzzification 
method is used to calculate a value that best represents the 
oUlput membership value M( T/ ). In this work, the 
difference between mean square emr of the (n-1)" aod n• 
epochs has been taken as the input to the fi=y logic 
algorithm At the end, of every epoch, this error difference 
has been pas.<ed through the inference mechanism and 
defuzzification method and T/ is determined. Fig. 8 

shows the dynamic change of T/ over epochs. The 
results pertaining to T/ adaptation using fuzzy logic 
in addition to PWU and SC approaches is shown in 
Table. 4. 

i • 0. 

!l • • 

10 -l+-~~,.-,~~~~-~="" 
1 10 10 1 10 1 

Number of epochs 

Figure 8 Training aod validation error characteristics 
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Table 4: Network performance while implementing 
different approaches 

Approaches Epoch Validation Testing 
emr(x 10"') error (x 104

) 

SC+PWU 26831 2.25379 1.30290 
SC+PWU+ 2681 2.25322 1.30256 
Fn77VLocic 

Step 7: DaJa Size 

Perfonnaoce can furfuer be improved by studying the 
effect of other influencing fuctors on estimation. So, the 
next factor that has been considered is data size as the 
perfonnaoce is very nruch dependent cm the nwnber of 
patterns available for !raining aod testing the network So, 
to study this effec~ a new dataset has been created that 
includes all the data obtained by experiments (15) and by 
interpolation (15). The new dataset has been subjected to 
basic aod modified approaches to select the appropriate 
network parameters aod configuration The resultant 
network has been subjected to T/ adaptatioo using fi=y 
logic since amoog all the approaches; T/ adaptation using 
fi=y logic seems to be favorable. Table 5 shows the 
corresponding result. Table 6 shows the percentage 
improvement of new (large) dataset in validation aod 
testing error with respect to the previous approaches. The 
approach followed shows a continuous improvement in 
tool estimation 

Table 5: Network performance- new dataset 

Approaches 

SC+PWU+ 
F 

Epoch 

353 

Validatioo error 
x IO 

2.01663 

Testing error 
x IO 

1.20622 

Table 6 Percentage improvement of new dataset over the 
experimental dataset while applying SC + PWU 
+ 11 adaptation using Fuzzy logic 

rovement over data set 
Validation error 

7 39"/o 
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CONCLUSIONS 

The following ccmclusions have been drawn: 

I. A methodology for tool status monitoring through 
sensor fusion presented here gives a closer estimation 
of tool wear which will facilitate process control and 
thereby improved product quality. 

2. MLP is found to be an effective tool status identifier. 
For the efficient use of the network, one bas to choose 
the optimum number of hidden nodes and optimum 
values for the networlc parameters. 

3. Further, the melhodology accentuates the importance 
of an apt SC for lhe desired network performance. 
This gives a caution lhat training should not be 
stopped based only on rate of convergence or small 
error threshold or small gradient lhreshold but by 
adopting a hybrid criterion along wilh mininrum 
validation error criterion 

4. PWU approach was better when compared to the 
continuous weight updation approach 

5. Adaptation of T] parameter using fuzzy logic showed 

better improvement in estimation of tool status. 

6. Data size is als~ an important influencing factor 
and showed a good improvement over the 
previous approaches. 

7. These approaches when followed sequentially 
can give good network performance irrespective 
of the area of application. 

LIMITATIONS 

I. Any method of condition monitoring calls for 
acquisition of as large data as possible; however, 
it was limited due to time and economical 
constraints. 

2. The methodology/approach adopted for tool 
status monitoring is based on data collected for a 
particular tool-work material pair only. 

SCOPE FOR FUTURE WORK 

I. Experiments can be done for acquiring additional 
process indicators such as cutting temperature 
and vibration to correlate with the tool flank 

wear. The effect of cutting fluids can also be 
studied. 

2. Surface finish, chip fonn, chip morphology, chip 
strain can also be used apart from flank wear 
since the present day industries emphasize on 
workpiece specifications rather than tool wear. 

3. Effect of multisensory information fusion can be 
studied through ANN with multi-input and 
multi-output. 

4. Generalization capability of the network can be 
improved through the study of the following 
influencing factors: 

• Gain of the activation function 
• Adapt T] for each weight link of the network. 

• Adapt µ after every epoch with respect to 

mean squared error using fuzzy logic. 
• Adapt weight links using fuzzy logic. 
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