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ABSTRACT 

 
Many digital signatures which are based on 
Elliptic Curves Cryptography (ECC) have been 
proposed. Among these digital signatures, the 
Elliptic Curve Digital Signature Algorithm 
(ECDSA) is the widely standardized one. However, 
the verification process of ECDSA is slower than 
the signature generation process. Hence, the main 
objective of this work is to study ECDSA in order 
to improve its execution time. The method of the 
improvement is focused on the mathematical 
relationships of the algorithm in a manner that its 
verification process can be efficient. As a result, 
without affecting the underlying mathematical 
problem – the Elliptic Curve Discrete Logarithmic 
Problem (ECDLP) - a related efficient scheme is 
developed. The signature verification algorithm of 
the modified scheme is found to be faster than the 
verification process of ECDSA by 45%.   
 
Keywords: Digital signature, ECDSA algorithm, Elliptic 
curve cryptography, Scalar multiplication, Signature 
generation, Signature verification. 
 

INTRODUCTION 
 
With the advent of information technology, 
ensuring network and data communication security 
has become a crucial issue. Though the information 
technology provides us with various versatile tools 
for data manipulation and data storage, it is not 
without different facets of security attack. Thus, it 
is crucial to have tools that can insure the integrity 
of data, the confidentiality of data, and authenticity 
of any form of data communication.  

 
To meet the requirements of network and data 
communication security, the cryptography science 
plays a great role. A variety of researches and 
applications of cryptography are developed in 
parallel with the advancement of the IT facilities. 

As a result, algorithms and techniques have been 
introduced to offer a better security mechanism. 
Algorithms like Rivest-Shamir-Adleman (RSA) [1, 
6, 8], Digital Signature Algorithm (DSA)[1, 15], 
Diffie-Hellman (DH) [1, 7], and Elliptic Curve 
Cryptography (ECC) based schemes [4, 10] -  like 
the ECDSA - are a few of the known cryptographic 
systems that are being employed in various 
applications. However, among these known 
cryptographic systems, ECC is emerging as an 
attractive and better alternative to the public-key 
cryptosystems [11, 12, 13, 14, 17, 18, 23]. ECC 
offers equivalent security with smaller key sizes 
resulting in faster computations.  

 
The use of elliptic curves in modern public key 
cryptography was independently introduced by 
Neal Kobltiz and Victor Miller in 1985 [2, 3, 4]. 
Since then, a lot of researches have been conducted 
in order to challenge its security strength and find 
out efficient ways of implementing ECC based 
cryptosystems. ECC has got increasing attention by 
the research community, as it offers equivalent 
security but shorter key size when it is compared 
with previously known systems like RSA and 
Discrete Logarithm (DL) – based cryptosystems. 
Though the confidence level of ECC is not equal to 
RSA as RSA has been around for above thirty 
years, it is widely believed that 160-bit ECC offers 
equivalent security of 1024-bit RSA.     

 
In general, ECC has better per-bit security, and 
hence, suitable in constrained environments like 
smart cards and hand-held devices. ECC has less 
storage, power, and bandwidth requirements, and 
improved performance [20].  

 
The rest of the paper is organized as follows: 
section 2 presents related works of elliptic curve 
digital signature. Preliminaries on ECC and 
ECDSA are presented in section 3. The proposed 
modified scheme is described in section 4. 
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Section 5 presents alternative form of the proposed 
scheme. Performance comparison of elliptic curve 
digital signature and the proposed modified scheme 
is presented in section 6, while section 7 concludes 
the paper. 

 
RELATED WORKS 

 
Leading mathematicians and scientists have done a 
lot to ensure the robustness and correctness of 
many of the cryptographic schemes [9]. However, 
in [17], it is discussed that none of the 
mathematical problems – like the Integer 
Factorization Problem (IFP), the Discrete 
Logarithm Problem (DLP), and the Elliptic Curve 
Discrete Logarithm Problem (ECDLP) – are 
proven to be intractable. This article [17] 
underlines that it is based on our belief of their 
intractability that we rely on these algorithms, as no 
efficient algorithms are found to solve them. This 
article, [17], also assures that no sub-exponential 
algorithm is found to solve ECDLP. 

 
Rosner discusses the implementation of GF1 (2m) 
based curves on a reconfigurable hardware [11]. It 
is shown that for GF (2168), one point doubling 
operation takes 273 clock cycles. The work in [11] 
provides with some fundamental concepts for 
hardware implementation.  The suitability of ECC 
based schemes for constrained devices and 
embedded systems is explained in [18]. Based on 
the per-bit security of ECC, this paper clarifies the 
advantage of ECC to achieve longer running 
battery operated devices with less heat, faster 
applications that consume less memory, and 
scaleable cryptographic applications. Moreover, the 
key-size comparison of ECC with RSA and DH 
based systems is given in [18]. In general, the 
advantage and performance comparison of ECC 
with RSA and DH schemes is provided in [12, 13, 
14, 17, 18]. 

    
In [16], implementation of ECDSA on Advanced 
RISC Machines (ARM) processors for a curve on 
GF (2m) is done. It is concluded that by using 
certain machine and curve specific techniques, the 
ECDSA signature can be made faster and 
optimized [16]. Similar work is done in [21] for a 
curve on GF (p). ARM processor implementation 
of curve p-224 is discussed in [21]. According to 
[21], it is concluded that 129.28ms was taken to 
perform point multiplication over the curve p-224 
for C-based implementation. And the time was less 
for assembly language based implementation.  

                                                    
1 Finite fields with pn, for p a prime integer and n a 
positive integer are known as Galois Fields or GF. 

Don B. Johnson, [12], has given an explanation of 
ECC suitability on high-security environment 
based on the underlying difficulty of ECDLP. It is 
explained that ECDLP is more difficult to solve 
than IFP and DLP [12] as currently known efficient 
algorithms to solve ECDLP are full exponential, 
whereas to solve IFP and DLP there are sub 
exponential algorithms. The article shown in [13], 
and the works discussed in [14] strengthened this 
idea. Moreover, in [13, 14], the suitability of ECC 
on smart cards is evidently explained, as ECC is 
more compact than RSA. Pietilainen [14] has 
compared ECC and RSA based on security, 
efficiency and space requirement by implementing 
both of them.  

 
In [22], the authors provide basic alternatives to 
resolve the implementation issues of ECC on 
constrained devices like cellular phones. They 
indicated that curves over GF (2m) are convenient 
for hardware implementation; whereas curves on 
GF (p) are suitable for software implementation. 
Finally, in [22], optimization of ECC based 
schemes is recommended as it is accepted as the 
next generation public-key cryptosystem.  

 
Many of the works that aimed at improving 
performance of ECC based schemes either 
concentrated on improving the underlying 
mathematical operations, or concentrated on 
implementation of specific curves on a specific 
hardware platform. Little is done in designing 
different digital signature algorithms which may 
have a better performance than the existing ones.  

 
In this work, after a thorough study of ECC based 
cryptosystems, areas of performance improvements 
of ECDSA has been examined. In ECDSA, the 
most expensive operation is the scalar 
multiplication or elliptic curve point multiplication. 
Another expensive operation is the modular 
inversion operation. Optimized techniques of scalar 
multiplication are given in [4, 16, 24]. Here, an 
attempt has been made to develop ECDSA related 
scheme in such a way that the number of elliptic 
curve point multiplications can be reduced during 
signature verification process. 

 
PRELIMINARIES 

 
Elliptic Curve Cryptography 

 
Elliptic curves for cryptography are defined over 
finite algebraic structures such as finite fields.  
Let’s assume prime fields Fp of characteristics 

3>p  [2, 4]. Such a curve is the set of geometric 
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solutions ),( yxP =  to an equation of the following 
form 

 
 )(mod: 32 pbaxxyE ++=  (1) 

 
Where a and b are constants in Fp (p > 3) satisfying 
4 a3 + 27 b2 )(mod0 p . To have the points on 
E  to form a group, an extra point denoted by О∞  is 
included. This extra point is called the point at 
infinity and can be formulated as 

 
   О∞ ),( ∞= x   (2) 

 
The point at infinity is the identity element for the 
group law formulated as 

 
pFyxyxpE ∈== ,|),({ that solves (1)} {∪ О∞}    

(3) 
 

This set of points form a group under a group 
operation which is conventionally written 
additively using the notation “+” [2]. The group 
forms an abelian group, [5], over which ECC is 
based and all operations are performed. 

 
Suppose the point P is in E(Fp), and suppose P has 
a prime order n, then, the cyclic additive subgroup 
of E(Fp) generated by P is 
 
 }.)1(,...,3,2,,{ PnPPPOP −= ∞

 (4) 
 
The prime p, the equation of the elliptic curve E, 
and the point P and its order n, are the public 
domain parameters. Furthermore, a randomly 
selected integer d from the interval [1, n-1] forms a 
private key. Multiplying P by the private key d, 
which is called scalar multiplication, will generate 
the corresponding public key Q, i.e. Q = dP.  The 
pair (Q, d) forms the ECC public-private key pair 
with Q is the public key and d is the private key. 

  
The Elliptic Curve Digital Signature Algorithm 
(ECDSA) 

  
ECDSA is the elliptic curve analogue of DSA 
[4, 16, 19]. It was accepted by many standard 
organizations around 2000. Below, the ECDSA 
signature generation and the ECDSA signature 
verification algorithms are given. The algorithms 
are available in [4].  

 
In ECC, there are a set of domain parameters 
denoted by ).,,,,,( hnPbaqD =  q represents the 
field order of the prime field Fq. The parameters 

qFba ∈,   are coefficients of the elliptic curve 

equation E. The parameter )( qFEP∈ is the base 
point. The parameter n is the order of the point P. P 
is the generator of the cyclic sub group P  
(Eq. (4)). The parameter h is known as cofactor. It 
is found as

n
FEorderh q ))((

= , Where order (E(Fq)) 

is the number of elements in E(Fq).  
 

Given the public-private key pair (Q, d), and 
domain parameters, the ECDSA signature 
generation and verification can be formulated as 
shown in Algorithms (1) and (2), respectively. A 
hash function, H shown in line 4 of Algorithm (1), 
accepts a variable size message M as input and 
produces a fixed-size output, referred to as a hash 
code H(M) or a message digest [2].  Hash functions 
are used for data integrity in conjunction with 
digital signature schemes, where a message is 
typically hashed first, and then the hash value as 
the representative of the message is signed in place 
of the original message. The receiver authenticates 
the message by applying the hash function on the 
message and re-computes the hash value. 

 
Algorithm (1)  ECDSA signature generation 

 
Given parameters q, a ,b, P, n and private key d, 
to sign a message m, A does the following  
 

1. Select k ]1,1[ −∈ n . 

2. Compute kP = ),( 11 yx . 
3. Compute r = nx mod1 . If r=0 then go to step 

1. 
4. Compute )(mHe = . 
5. Compute ndreks mod)(1 += − . If s=0 go to 

step 1. 
6. Return(r, s). 

 
Algorithm (2)  ECDSA signature verification 

 
To verify A’s signature (r, s) on m, B uses 
parameters q, a, b, P, n, h, public key Q, message 
m and signature (r, s). 

 

1. Verify that r and s are integers in the interval 
[1, n- 1]. If any verification fails then return 
(“Reject the signature”).  

2. Compute e=H(m). 
3. Compute w= s-1 mod n.  
4. Compute u1 = ew mod n and u2 = rw mod n. 
5. Compute X = u1 P + u2Q. 
a. If X =

∞O then return (“Reject the signature”); 
6. Take the x-coordinate of X as x1 and compute 

v = x1 mod n. 
7. If v = r then return (“Accept the signature”); 

Else return (“Reject the signature”). 



Tilahun Kiros and Kumudha Raimond 

Journal of EEA, Vol. 26, 2009 

68 

Below a proof is given to show how the signature 
verification of ECDSA works. If a signature (r, s) 
on a message m was generated by A, then 
necessarily the following will be true as a result of 
Algorithm (1), step number 5: 

 
))(mod(1 ndreks +≡ −                    (5) 

 
From Eq. (5), by the principles of modular 
arithmetic, we will obtain that 

 
 )(mod)( 111 nrdsesdresk −−− +≡+≡   (6) 

  
However, in algorithm (2), step number 3, 

)(mod1 ns −  is represented by the parameter w as  
).(mod1 nsw −≡  Substituting )(mod1 ns −  in Eq.(6) 

by w , we will get 
 

 )(mod nwrdwek +≡  (7) 
 
But, in Algorithm (2), step number 4, )(mod nwe  

is represented by 1u  and )(mod nwr is 

represented by .2u  Thus, based on equation (7), 
 
 )(mod21 nduuk +=  (8) 
 

From the verification algorithm, we can see that 
 
 QuPuX 21 +=   (9) 

 
However, the public key Q = dP, where d is a 
private key in the interval }1,1[ −n  and P is the 
generator of the cyclic sub group P (Eq. (4)). 
Therefore, substituting Q in Eq. (9) by dP and 
using Eq. (8), we will obtain, 

 
   kPPduudPuPuX =+=+= )( 2121  (10)                                              

 
This proves that v = r. Because, kPX =  indicates 
that the x-coordinate of kP, 1x , in Algorithm (1) 
step numbers 2 and 3, and the x-coordinate of X, 

1x ,  in Algorithm (2) step number 6, are equal in 
essence.  

 
The ECDSA algorithm is involving modular 
inversion and the elliptic curve point multiplication 
operations (scalar multiplication) in the process of 
signature generation and signature verification. 
Both the modular inversion operation and scalar 
multiplication operation can have impact on the 
performance of the algorithm. In fact, the most 
time consuming operation in ECDSA is the elliptic 

curve scalar multiplication operation. This work 
focuses on a possible way of minimizing the scalar 
multiplication operations. 
 

PROPOSED SCHEME 
 

Scalar multiplication dominates the execution time 
of ECC based schemes [4, 10]. In ECDSA, there 
are scalar multiplications in the signature 
generation and signature verification processes. In 
step 2 of algorithm (1) (ECDSA signature 
generation), the base point P is multiplied by the 
scalar or integer value k. Furthermore, in step 5 of 
algorithm (2) (ECDSA signature verification), the 
base point P is multiplied by an integer value u1  
and the public key Q is multiplied by an integer 
value u2. As there are two scalar multiplications in 
the ECDSA verification algorithm, execution of the 
signature verification process needs a longer time 
than the signature generation process. So, attention 
is given to the verification process to examine if a 
scheme can be developed to minimize the 
execution time needed for signature verification of 
ECDSA. 

 
Observing algorithms (1), and (2), there is an 
important relationship between the signature 
generation and the signature verification. The 
elliptic curve point kP = (x1, y1) computed in the 
signature generation algorithm must be equal to the 
elliptic curve point X = (x1, y1) computed during 
signature verification.  Thus, if these points are 
equal, one can declare that the signature is valid 
and the signature is indeed generated by the owner 
of the public key Q. Therefore, finding any 
mathematical relationship without impairing the 
underlying ECDLP problem so that the points kP = 
(x1, y1) and X = (x1, y1) can be equal, leads us to a 
new scheme. Based on this notion, an attempt is 
made to search for such mathematical relationships 
and, accordingly, the following scheme is 
proposed. 

 
Let the signature s is generated as    

 
 )(mod ndkes ++=  (11)  

                    
Where e is the hash value H(m) of  a given message 
m, k the per message secret, and d the private key. 
Hence, k can be computed as  

 
)(mod ndesk −−=  (12)                                         

 
As the elliptic curve point X = (x1, y1) must be 
equal to the elliptic curve point kP = (x1, y1) (see 
algorithms (1), and (2)), in the verification process, 
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the point X = (x1, y1) can be calculated based on 
the following steps. 

 
1. Compute e = H(m). 
 

2. Compute ).(mod nesu −= (i.e. u = k + d 
(mod n)). 

 

3. Compute X = uP – Q.  
 
To make it further clarified and to show that 
verification process holds, the following proof is 
given. 

 
Proof: 

 
If the signature (r, s) is indeed generated by the 
private key d holder using Eq. (11), then Eq. (12) 
holds true. In the verification process X must be 
computed as 
 

kPPddk
Pdu

dPuP
QuPX

=−+=
−=
−=
−=

)(
)(

  

 
And this proves that X = kP, from which it can be 
concluded that v = r is as intended. The signature 
generation and signature verification algorithms are 
formulated as shown in algorithms (3) and (4), 
respectively. 

 
Algorithm (3)  Proposed scheme signature generation 
 
Given domain parameters q, a ,b, P, n and private key 
d, to sign a message m, A does the following  
 

1. Select k ]1,1[ −∈ n . 

2. Compute kP = ),( 11 yx . 

3. Compute r = nx mod1 . If r = 0 then go to step 1. 
4. Compute )(mHe = . 
5. Compute )(mod ndkes ++= . If s = 0 or 

es =  then go to step 1. 
6. Return(r, s). 

 
Algorithm (4) Proposed scheme signature verification 
 
1. To verify A’s signature (r, s) on m, B uses domain 

parameters q, a, b, P, n, h, public key Q, message 
m and signature (r, s). 

2. Verify that r and s are integers in the interval [1, n-
1]. If any verification fails then return (“Reject the 
signature”).  

3. Compute e = H(m). 
4. Compute ))(mod( nesu −= . If 0=u return 

(“Reject the signature”). 

5. Compute X=uP - Q. 
6. If X = O∞ then return (“Reject the signature”); 
7. Take the x-coordinate of X as x1 and compute v = 

x1 mod n. 
8. If v = r then return (“Accept the signature”); Else 

return (“Reject the signature”). 
 
In this proposed scheme, the execution time 
required to verify a signature is reduced almost by 
half when it is compared with the execution time 
required to verify a signature in ECDSA. Both of 
the algorithms are compared for the underlying 
field size of 32-bit and 64–bit. Signature 
verification process of the proposed scheme was 
48-57% faster than that of the ECDSA (see section 
6). The reason is, in ECDSA’s signature 
verification process, there are two elliptic curve 
point multiplications i.e. u1 P and u2Q 
(algorithm  (2)). The results of the point 
multiplications are to be added. So, there is one 
point addition operation. Whereas in the proposed 
one, there is only one scalar multiplication i.e. uP. 
Furthermore, there is one point addition operation 
(algorithm (4)). Thus, it would be reasonable and 
expected that the execution time for signature 
verification to be reduced almost by half.   

 
The prominent issue here is security considerations. 
Basically, cryptographic schemes are designed to 
secure our on-line communication as well as stored 
information asset. So, is this proposed scheme as 
secure as ECDSA?  

 
The security of ECDSA relies on the mathematical 
problem ECDLP. Currently known efficient 
algorithms to solve the ECDLP are fully 
exponential time algorithms, and hence, the 
problem is intractable. Similarly, this proposed 
scheme is relied on the ECDLP. However, the way 
signature is generated and verified in this scheme is 
different from that of the ECDSA. In ECDSA, the 
adversary is required to recover d by brute search 
or by understanding the per message secret key k or 
by using currently known efficient algorithms. If 
the adversary can get an opportunity to know the 
value of a single message secret key k, it is possible 
to recover d from k. For this proposed scheme, if 
the adversary learns the per message secret k, d can 
be recovered as 

 
 ))(mod( neksd −−=  (13) 
 

Without the knowledge of k, guessing d and k from 
the relationship )(mod ndkes ++= is difficult as 
there are different values of d and k in [1, n-1] that 
can satisfy such relationship. In fact, there are 
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12)1()1( 2 +−=−×− nnnn  possible solutions in 
the interval [1,  n - 1] for the equation 

)(mod ndkes ++=  for a given values of s and e. 
Such a result is very huge number. The complexity 
of this approach will be )( 2nO . So, by using this 
approach, it is not possible to guess the value of k 
or d. Rather than using this method, the straight 
forward attack – exhaustive search - is easier. That 
is, computing all the points PnPPP )1....(3,2, −   
until the point Q is encountered.  

 
If such a guess would have been possible, then 
adversaries could have been also successful in 
recovering d from the relationship kduu =+ 21  
(see algorithm (2)) in ECDSA. Thus, from these 
arguments, it can be seen that this proposed scheme 
can be as secure as ECDSA. However, 
cryptographic schemes should normally pass 
through a lot of evaluations by different 
mathematicians and computer scientists before they 
get employed in real world applications in order 
that their security can be assured.  

 
Currently, the most known efficient algorithm to 
attack ECDLP is the Pollard’s rho algorithm. The 
main idea of Pollard’s rho algorithm is to find 
distinct pairs (a, b) and (a’, b’) of integers modulo 
n such that [4] 

 

 
.)'()'()'(

.''
dPbbQbbPaa

QbPabQaP
−=−=−

+=+   (14) 

 
Here, the goal is to recover the private key d. From 
the Eq. (14), the value of d can be recovered as 
 
 

)(mod)')('(
)'()'(

1 nbbaad
dPbbPaa
−−−=

−=−                   (15) 

 
The method for finding the pairs (a, b) and (a’, b’) 
is to select random integers ]1,1[, −∈ nba  and 
store the triples ),,( bQaPba + in a table until 
another point equal to bQaP +  is obtained for the 
second time [4]. This occurrence is called collision 
[4]. By the birth day paradox, the expected number 
of iterations before a collision is obtained is 
approximately .2533.12/ nn ≈π   

 
In the proposed variant of ECDSA, there is one 
loophole so far discovered while designing the 
algorithm. If the adversary prepares his/her own 
message m and calculates the hash value e as 

)(mHe = , then by assigning s = e and 

Qxr = (mod n)- where Qx  is the x -coordinate of 

the public key  Q  and n is the order of the base 
point- the signature pair (r, s) will be a valid 
signature.  In signature verification, the verifier will 
verify the signature as 

 
0)(mod)(mod =−=−= neenesu  

Then, 
QQPQuPX −=−=−= 0  

 
However, -Q contains the coordinate 
pair ),( QQ yx − , and hence, rnxv Q == )(mod  is as 
required. This is the reason for the check es ≠ in 
algorithm (3) and the check 0≠u in algorithm (4). 

 
ALTERNATE FORM OF THE PROPOSED 

SCHEME 
 

An alternate form of the proposed scheme can be 
achieved by including the parameter r while 
computing s as shown below: 

 
 )(mod ndkers ++=  (16) 
  

And k can be computed based on the following 
equation 

 
 )(mod ndersk −−=    (17) 
 

Therefore, in the verification process u (algorithm 
(4)) can be computed as shown below 

 
 ).(mod nersu −=  (18)  
 

In the verification process X can be calculated as  
 
 

kPPderdker

dPPnersQuPX

=−−++=

−−=−=

)(

))(mod(  (19) 

 
PERFORMANCE COMPARISON OF ECDSA 

AND THE PROPOSED SCHEME UPON 
PRACTICAL IMPLEMENTATION 

 
To test the time taken to verify a signature or to 
generate a signature in ECDSA, and in the 
proposed scheme, three sample inputs are used for 
k and d. The impact of the message size on the 
execution time is negligible. 

 
All the algorithms are executed in a Dell laptop. 
The laptop’s processor is Intel Centrino with speed 
of 1.5GHz. It has 256MB RAM. Each of the 
algorithms has been run five times and then the 
time elapsed to execute the program at each run is 
registered.  
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The time taken to execute the ECDSA’s and the 
proposed scheme’s verification process is shown in 
Table 1. The corresponding average value is shown 
for each of the three sample inputs. Only the 
average values are given to save space.  

 
As it can be observed from Table 1, the execution 
time difference between corresponding value for 
ECDSA and proposed scheme is very large. This is 
as a result of reduced elliptic curve point 
multiplications. Moreover, though the impact on its 
improvement is negligible as the underlying field 
size is increasing; two modular inversion 
operations available in ECDSA are eliminated in 
the proposed scheme.  

 
Table 1:  Average time taken to execute signature 

verification of ECDSA and the proposed 
scheme for each of the three sample inputs 

  

 
Algorithm 

Average elapsed time to verify a signature 
(in seconds) – ECDSA vs. proposed scheme 
For sample 

input 1 
For sample 

input 2 
For sample 

input 3 
32-
bit 

64-
bit 

32-
bit 

64-
bit 

32-
bit 

64-
bit 

ECDSA 0.31 1.144 0.33 1.09 0.318 1.19 
Proposed 
Scheme 0.165 0.55 0.16 0.53 0.17 0.39 

Difference 
in sec. 0.145 0.594 0.17 0.56 0.148 0.80 

 
For each sample input the improvement in 
percentage is calculated as  
 
  %.100

secintimeverif.ingCorrespondsECDSA'
Sec.inDifference

×  (20) 

 
The result is depicted in Table 2. For 32-bit field 
the overall average improvement is 48.28%. For 
the 64-bit field the overall average improvement is 
56.93%. It can be seen that the proposed scheme’s 
signature verification process can run faster than 
the ECDSA’s signature verification by about 48-
57%.  

 
Table 2: Average improvement in percentage for 

signature verification process ECDSA 
 

 
Sample input 

number 

Average improvement for verification 
process in percentage (%) 

Signature verification 
32-bit 64-bit 

1 46.77 51.92 

2 51.52 51.64 

3 46.54 67.23 

Sum 144.83 170.79 

Average 48.28 56.93 

In general, it is observed that above 45% 
performance improvement can be achieved for 
signature verification process. 
 

CONCLUSION 
 

A related new scheme is proposed and developed. 
This new scheme and ECDSA are implemented for 
comparison purposes. The signature verification 
algorithm of the newly proposed scheme is found 
to be above 45% faster than the verification process 
of ECDSA. The test was performed for randomly 
selected specific sizes of the private key d and the 
one-time key k. The underlying field 
implementation was up to 192-bit size. Potentially, 
if further researches are conducted to examine its 
security strength, we believe that the result will 
play a great role in enhancing the speed of ECC 
based digital signature schemes. 
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