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ABSTRACT 

 
Three new variants of continuum-based models for 
an elastic subgrade are proposed. The subgrade is 
idealized as a homogenous, isotropic elastic layer 
of thickness H overlying a firm stratum. All 
components of the stress tensor in the subgrade are 
taken into account. Reasonable assumptions are 
made regarding the depth-wise variation of the 
vertical shear stress components and of the 
horizontal-to-vertical normal stress ratios to 
simplify mathematical work. The assumptions are 
based on observation of available analytical results 
of stress distributions and on knowledge of lateral 
earth pressure theories. The resulting differential 
equations are similar in form and order to a high-
order model developed earlier by Reissner based 
on a number of simplifying assumptions, but with 
different coefficients dependant on Poisson ratio. 
With the help of appropriately selected mechanical 
models, it has been shown that all of the new model 
variants consistently give larger effective vertical 
stiffness and larger shear interaction among the 
classical Winkler springs for the range of Poisson 
ratio of practical interest. 
 
Keywords: Continuum models, Kerr model, 
Mechanical models, Reissner model, Shear 
interaction, Winkler model. 
 

INTRODUCTION 
 
Subgrade models developed so far can be 
categorized into two classes: continuum-based and 
mechanical models. A number of mechanical 
models have been proposed in the past having 
varying degrees of mathematical complexity and 
different numbers of model parameters [1-6]. These 
models range from the classical single-parameter 
Winkler model to the multi-parameter models of 
Rhines [3,4]. In contrast, continuum-based 
subgrade models proposed in the past are relatively 
few in number. Reissner's simplified continuum 
model (RSCM) can be regarded as one of the 
pioneering works based on some direct simplifying 
assumptions [3,4,7,8]. Horvath used later on two 
modifications of Reissner model to study the 
behavior of mat foundations [3,7]. Vlasov and 
Leont'ev presented a relatively indirect application 

of the simplified continuum that involves 
variational calculus [9]. 
 
The RSCM makes the simplifying assumption of 
zero in-plane stresses; i.e. 0=== xyyx τσσ  [8]. 
The works of Horvath are also based on the same 
assumption [3,7]. The consequence of this 
assumption is that the vertical shear stress 
components become constant and the vertical 
normal stress component varies linearly with depth. 
This assumption considerably simplifies the 
mathematical work needed in arriving at the 
mathematical model, which is a second-order 
differential equation with constant coefficients. 
However, it underestimates both the vertical 
stiffness of the subgrade and the inherent shear 
interaction rendering the model one of the most 
conservative.  
 
The present work follows Reissner's approach, but 
without neglecting any stress components. Instead, 
three different combinations of assumptions are 
made with regard to the lateral normal and the 
vertical shear stress components resulting in three 
correspondingly different variants of subgrade 
models.  
 
In the first model variant, a linear relationship 
between the horizontal and the vertical normal 
stress components is assumed. This assumption has 
as its basis the classical theory of lateral earth 
pressure, in which linear relationships are assumed 
between the normal stresses, whether one deals 
with active, passive or at-rest lateral earth pressure 
condition. The other assumption in this model is a 
constant depth-wise variation of the vertical shear 
stress components.  
 
In the second model variant, whereas the first 
assumption in the first variant with respect to the 
horizontal normal stresses is maintained, the 
second assumption with respect to the vertical 
shear stresses is improved by assuming a bilinear 
depth-wise variation. This second assumption is 
introduced as a reasonable approximation of the 
nonlinear variation of the shear stresses observed in 
plots of analytical results available in the literature 
[10]. 
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The third model variant is derived by maintaining 
the second assumption in the second variant with 
respect to the vertical shear stresses and 
introducing an exponentially decaying function to 
approximate the vertical variation of the ratio of the 
horizontal to the vertical normal stresses. Once 
again, plots of available analytical results of the 
normal stresses are used to support this assumption 
[10]. 
 
Interestingly, all of the three model variants result 
in differential equations similar in form and order 
to that of RSCM, but exhibiting notable differences 
in their coefficients. A synthesis of these models 
with equivalent mechanical models helps in 
interpreting the differences observed in the 
coefficients of the differential equations. For this 
purpose, the Kerr mechanical model is used. 
Comparisons show that all of the new model 
variants brought about increases in the vertical 
stiffness of the subgrade and the shear interaction 
among the Winkler springs. 
 
There is a trend of increasing interest in numerical 
and analytical studies of beams and plates on 
elastic foundations using such models [11-15]. 
Similar studies on beams and plates using various 
subgrade models that include the variants reported 
in this work are currently underway with the 
objective of corroborating the findings presented 
here based on theoretical considerations alone. 
Numerical results found so far are encouraging. It 
appears possible to calibrate these models so that 
they give results in excellent agreement with finite-
element based models.  

 
THE PROPOSED MODELS 

 
In all model variants proposed in this work, the 
subgrade under consideration is similar to that of 
RSCM, which consists of a homogenous, isotropic 
elastic layer of thickness H underlain by a rigid 
formation as shown in Fig 1. The layer is 
characterized by its elastic parameters of Young's 
modulus, E, and Poisson's ratio, ν [8]. At the depth 
H, all deformation components are assumed zero. 
 
 
 
 
 
 
 
 
 
Figure 1 The elastic soil layer of thickness H 

overlying a rigid stratum 

The difference between the stress tensors of the 
RSCM and the present model variants is as shown 
in the arrays below in accordance with the 
Cartesian coordinate system: 
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In the RSCM, the three independent in-plane stress 
components are neglected (i.e. 0=== xyyx τσσ ). 
As a consequence, the two remaining shear stress 
components, τxz and τyz, become constant with 
respect to depth, and the only non-zero normal 
stress component, σz, varies linearly with depth. In 
contrast, no stress component is neglected in any of 
the models proposed in this work as shown in the 
array on the right-hand side. The proposed three 
models differ from each other according to the 
assumptions made with regard to the depth-wise 
variation of the vertical shear stress 
components, xzτ and yzτ , and the ratio of the lateral 

normal stress components, xσ  and 
yσ , to the 

vertical normal stress, zσ . Simplifying assumptions 
with regard to the rest of the stress components are 
unnecessary. 
 
Model variant 1  
 
This model, referred to simply as Variant 1, is 
based on the following two basic assumptions: 
 
i. The horizontal normal stresses, σx and σy, are 

linearly related to the vertical normal stress, 
σz; i.e. zxx k σσ =  and 

zyy k σσ = . Knowledge 
of lateral earth pressure theories motivated this 
assumption and can be utilized to reasonably 
estimate the values of the coefficients kx and 
ky. Specifying values for the coefficients in 
advance is not necessary for the derivation of 
the model.  

 
ii. The vertical shear stress components, τxz and 

τyz, are assumed constant with depth. This 
assumption is made only for the sake of 
mathematical ease and in order to show that 
RSCM is a simplified form of this model 
variant. This assumption results in a linear 
depth-wise variation of the vertical normal 
stress, σz. 

 
 

    p(xy) 

z 

x 
Isotropic elastic 

stratum: E, ν   
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Pertinent stress equations, strain-displacement 
relations, Hooke's law for isotropic elastic 
materials, and the boundary conditions at the 
ground surface and at the interface with the rigid 
formation are utilized to derive the mathematical 
model, the details of which are presented in 
Appendix A. 
 
The resulting subgrade model relating the surface 
pressure p(x, y) and the corresponding surface 
displacement w0(x, y) is given by 
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In this second order partial differential equation 
with constant coefficients, G is the shear modulus 
of the upper layer, and the coefficient α is given by 
the relation  
 

 ( )yx kk +−= να 1  (2) 
 
For kx= ky=0 (or zero lateral normal stresses), the 
coefficient α becomes unity, and Eq. (1a) reduces 
to the form of RSCM [8] given by 
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If the higher derivatives in Eqs. (1a) and (1b) are 
dropped, Winkler-type models are obviously 
recovered. If the coefficients kx and ky are assumed 

to be equal to the lateral earth pressure coefficient 
for at rest condition, k0, and noting that this 
coefficient can be expressed as ( )νν −= 10k , then 
α in Eq. (1a) takes the form 
 

 ν
ννα

−
−−

=
1

21 2
 (3) 

 
According to this relation, α is always less than one 
tending to zero with ν approaching 0.5. For ν=0.5, 
Eq. (3) becomes indeterminate. However, the 
coefficients kx and ky can generally be selected 
different from k0,  and k0 can also be expressed in 
terms of other soil properties like the strength 
parameters or the degree of consolidation. 
 
Model variant 2  
 
This model, referred to as Variant 2, is based on the 
following assumptions: 
 
i. The horizontal normal stresses, σx and σy, are 

linearly related to the vertical normal stress, 
σz, as in Variant 1. 

 
ii. The vertical shear stress components, τxz and 

τyz, are assumed to vary with depth according 
to a bilinear relation. This assumption 
emanates from observation of plots of the 
stress components underneath a uniformly 
loaded circular region on the surface of an 
elastic half space. These plots are prepared 
from tabular values provided by Das [10] 
citing the works of Ahlvin and Ullery and are 
given in Fig. 2(a) for different vertical planes. 
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  Figure 2 (a) Plots of the vertical shear stress with depth for a circular region subjected to a uniformly 

distributed load; (b) A qualitative plot of the influence factor I(z) 
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In Fig. 2(a), b is the radius of the loaded circular 
region and s is the radial coordinate in accordance 
with the cylindrical coordinate system, the origin of 
which is taken as the center of the circle. All the 
curves in Fig. 2(a) exhibit a similar trend, and their 
peaks occur within a narrow band of z. An 
exception is the curve for points below the edge of 
the circle due to the discontinuity there. Plots of 
shear stresses exhibiting a similar trend are also 
reported by Horvath for points beneath a loaded 
square region on the surface of a layered formation 
[7]. 
 
The plots in both Fig. 2(a) and in Horvath [7] 
suggest the use of the following bilinear variation 
for the vertical shear stress components with depth: 
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where ( )yxxz ,τ  gives the variation of τxz in the 
horizontal x, y-plane, and I(z) is the depth-
dependant influence factor assumed to vary bi-
linearly. A qualitative plot of I(z) is given in 
Fig. 2(b). This assumption results in a quadratic 
variation of the vertical stress, σz, unlike the linear 
variation in Variant 1 and RSCM. The coefficients 
a2, b1, and b2 characterizing the two line segments 
of I(z) can be readily determined from the known 
coordinates of the three points in Fig. 2(b) - the 
origin, the peak and the lower-most point. 
 
As in Variant 1, all pertinent elasticity equations 
together with the boundary conditions are 
employed to derive the mathematical model, the 
details of which are given in Appendix B. In 
addition, continuity of deformation at the depth 

Hz η=  is taken into consideration. The 
corresponding mathematical model of the subgrade 
becomes 
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Where 31 ξξξ =p and 32 ξξξ =w . The coefficients 

β, ξ1, ξ2, and ξ3 in Eq. (5a) are provided in 
Appendix B. The coefficient α is as defined in 
Eqs. (2) for the first new variant.  
 
For thick elastic strata, the depth-wise variation of 
the vertical shear stresses shown in Fig. 2 for an 
elastic half space may be taken as sufficiently 
representative for most foundations. The thickness 

H may be taken as that, beyond which the shear 
stress becomes negligibly small. The corresponding 
value of IH at this depth may be taken around 0.1. 
Furthermore, the normalized average depth, at 
which the shear stresses assume peak values, may 
be taken as 6.0=η in both cases.  
 
With the peak and the lower-most points in 
Fig. 2(b) so established, the influence curve for the 
vertical shear stresses is fully defined and the 
various constants in the coefficients of Eq. (5a) can 
be readily evaluated from the relations given in 
Appendix B. Substituting these coefficients, one 
obtains the following relation for the subgrade 
model sought: 
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Comparison of Eq. (5b) with (1a) and (1b) shows 
that the three models are still similar in form, but 
exhibit differences in their coefficients.  
 
If the higher derivatives in Eq. (5b) are dropped, 
one obtains the same Winkler-type model as in 
Variant 1, because the two models differ from each 
other only in the depth-wise variation of the 
vertical shear stresses - a condition irrelevant in 
Winkler model, which entirely ignores the shear 
stresses. 
 
If the coefficients kx and ky are assumed equal to 
the lateral earth pressure coefficient for at rest 
condition, k0, as in the previous model, then α can 
be determined from Eq. (2) for any value of ν. 

 
Model variant 3 
 
In this variant, whereas the second assumption in 
Variant 2 of bilinear variation of the vertical shear 
stress components with depth is maintained, the 
first assumption of a linear relation between the 
normal stress components is replaced by the 
decaying exponential functions of the form: 
 

 z
z

yyz
z

xx erer σσσσ ζζ −− == ;  (6) 
 
where rx, ry, and ς are constants. This assumption 
is motivated by observation of plots of zr σσ  for 
points directly below a circular region of diameter 
equal to the layer thickness on the surface of an 
elastic half space subjected to a uniformly 
distributed vertical load, where σr is the radial 
normal stress and σz is the vertical normal 
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stress [10]. An exponential function of the type of 
Eq. (6) tallies excellently with the plots, from 
which the constants rx, ry, and ς can be easily 
estimated. 
 
Horvath gave plots of the normal stresses for points 
below a vertically loaded square region of side 
length B on a layered half space [3]. These plots 
also suggest the use of relations similar to Eq. (6) 
for depths of up to around 0.7B, especially for 
points directly below the loaded region. 
 
All pertinent elasticity equations together with the 
boundary and continuity conditions are employed 
to derive the mathematical model, the details of 
which are described in Appendix C. The resulting 
mathematical model takes the form 
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Where 31 κκκ =p and 32 κκκ =p . Expressions 

for the coefficients λ, δ, κ1, κ2, and κ3 in Eq. (7a) 
are given in Appendix C. Observation of the plots 
suggests the use of the following function: 
 

 z
Hz

yx e σσσ 96.38.0 −==   
 
The same bilinear depth-wise variation of the 
vertical shear stresses shown in Fig. 2 is taken with 
IH =0.1 and η=0.6. Once the depth-wise variations 
of the lateral normal stresses and of the vertical 
shear stresses are known, the coefficients in 
Eq. (7a) can be readily evaluated in terms of the 
Poisson's ratio and the layer thickness H using the 
relations provided in Appendix C. Accordingly, 
one obtains 
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The coefficients in the brackets and in the 
expression for κw are dimensionless quantities and 
dependent only on the Poisson ratio that can be 
easily evaluated. Once again, the differences in the 
coefficients of this and the previous mathematical 
models are to be noted on the coefficients. 

One can note from the forgoing material that all the 
proposed continuum-based models have the same 
form and order as the RSCM. All involve the 
functions p and w0 and their respective second 
derivatives. The trend suggests that the likelihood 
of the occurrence of other terms and other orders of 
derivatives is unlikely with further refinement of 
assumptions. A recently published work of the 
author that generalizes the presented approach of 
subgrade modeling showed that the maximum 
order of the differential equation and its general 
form remain indeed unchanged [15]. 

 
SYNTHESIS OF THE PROPOSED 

CONTINUUM-BASED MODELS WITH A 
PERTINENT MECHANICAL MODEL 

 
The synthesis of continuum-models with pertinent 
mechanical models provides a means of 
quantifying the mechanical model parameters from 
those of the continuum. It also provides a useful 
perspective to compare the continuum models with 
each other. Looking at the form and order of the 
governing differential equations of the subgrade 
models presented above, the most appropriate 
mechanical model for this purpose is the three-
parameter Kerr model [4].  
 
This model consists of two beds of springs with 
spring constants of ku and kl per unit area separated 
by a shear layer of parameter gk as shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
          Figure 3 The Kerr (or modified-Pasternak) 

mechanical model 
 
The governing differential equation of this model 
as derived by Kerr is given by [4] 
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Equation (8) is similar in form and order to the 
equations of all continuum-based models presented 
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above. Equating the coefficients in Eq. (8) with the 
corresponding coefficients in Eqs. (1a), (1b), (5b) 
and (7a) provides in each case three equations. 
Simultaneous solution of these equations yields 
different expressions for the mechanical model 
parameters, which are summarized below together 
with the effective stiffness coefficient established 
using the relation ( )lulue kkkkk +=  for the 
springs in Fig. 3 that are arranged in series: 
 
Kerr Parameters from RSCM 
 

H
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Kerr Parameters from Variant 1 
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Kerr Parameters from Variant 2 
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Kerr Parameters from Variant 3 
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Comparison of the relations in Eqs. (9) and (10) 
shows that the spring constants of Variant 1 are 
always 1/α times those of RSCM. Since the factor 
α is always less than unity for common values of 
Poisson ratio of soils, both the individual bed of 
springs and the effective spring of Variant 1 are 
always stiffer than that of RSCM. In contrast, the 
shear parameter remained unchanged as could be 
expected, because constant vertical shear stresses 
are either assumed or implied in both models. 
 
The parameters from Variant 2 become clearer by 
introducing the pertinent relations for the bilinear 
variation of the vertical shear stress components. 
This yields Hp 35.0−=ξ  and 31.1−=wξ , which 
when inserted in Eqs. (11) give 
 

GHg
H
Ek

H
Ek lu === ;36.1;75.3

αα
 (13) 

 
These relations show that even though the effective 
spring coefficient remains the same in both 
Variant  1 and Variant 2, the individual spring beds 
are different. The shear parameter of Variant 2, on 
the other hand, has increased significantly to 2.25-
fold that of RSCM and Variant 1 irrespective of the 
Poisson ratio. Therefore, Variant 2 predicts 
significantly higher stiffness and higher shear 
interaction of the subgrade as compared to RSCM, 
especially for soils with larger Poisson ratio. 
 
With the introduction of the bilinear variation for 
the vertical shear stresses and the decaying 
exponential function for the ratio of the lateral to 
vertical normal stresses, the various constants in 
Eqs. (12) can be determined from Eqs. (7b). Then, 
the coefficients of the individual spring beds and 
the shear parameter can be easily evaluated. For 
two selected values of Poisson ratio, this gives: 
 
For  3.0=ν : 

GHg
H
Ek

H
Ek

H
Ek elu 95.0;14.1;22.1;7.17 ====

 
For 45.0=ν : 

GHg
H
Ek

H
Ek

H
Ek elu 30.122.1;30.1;3.21 ====

 
These expressions show that Variant 3 predicts 
always a shear parameter much higher than 
Variant  1 and RSCM, and even larger than 
Variant  2 for Poisson ratio larger than about 0.33.  

 
Plots of Kerr Parameters 

 
The three normalized Kerr parameters are plotted 
in Fig. 4 against Poisson ratio.  
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Figure 4: Plots of the normalized model 

parameters against Poisson ratio as 
predicted by different continuum-based 
models 

 
The following important observations can be made 
from these normalized plots within the common 
range of values of Poisson ratio: 
 
1. The three parameters of the RSCM are all 

independent of Poisson ratio and always less 
than those of the new model variants. This 
model is thus the most conservative of all. 

 
2. The increase in the normalized spring stiffness 

values from 1.0 at ν =0 to 1.25 at ν=0.5 in 
Variant 3 is slow as compared to the rate of 
increase observed in Variants 1 and 2. 

Furthermore, the stiffness does not become 
indeterminate at ν = 0.5. This is due to the 
more realistic decaying exponential function 
used in Variant 3 for the normal stress ratios in 
lieu of a constant. 

 
3. In the important range of Poisson ratio of soils, 

Variant 3 represents the highest shear 
parameter of all that increases nearly linearly 
with increasing values of ν. This variation can 
be approximated by 259.0317.2)/( += νGHg k . 
The shear parameter of Variant 3 for ν = 0.5 is 
more than threefold that of RSCM and Variant 
1 and about 40% larger than that of Variant 2. 

 
CONCLUSIONS 

 
From the foregoing material, the following 
conclusions are drawn: 
 
1. The RSCM consistently underestimates both 

the vertical stiffness and the inherent shear 
interaction of the subgrade.  

 
2. The highest shear interaction is achieved in 

Variant 3, especially for large Poisson ratios, 
by combining the assumption of bilinear 
vertical shears with the assumption of an 
exponentially decaying vertical-to-horizontal 
normal stress ratio with depth. However, the 
increase in the vertical stiffness is not as large 
as in the other two model variants. 

 
3. Considering the reasonable assumptions they 

are based on, Variant 2 and Variant 3 are 
promising alternatives to existing continuum 
subgrade models.  

 
4. Results of recently completed studies on 

beams using these models indicate that the new 
models, in particular Variant 3, can be easily 
calibrated to give results in excellent 
agreement with finite-element based models.  
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APPENDICES 
 
Appendix A: Derivation of Model 1 
 
Equation (1a) is derived following the same 
procedure as in Reissner’s and Horvath’s work 
[2,3]. 
 
The stress equilibrium equation in the vertical 
direction is given by 
 

 
0,,, =++ yzyxzxzz ττσ  (A1) 

 
Assuming that the vertical shear stresses are 
constant with depth, integrating Eq. (A1) with 
respect to z, and employing the stress boundary 
condition at the surface, one obtains  
 

 pQzz −−=σ  (A2) 
 
Substituting Eq. (A2) in the combined stress-strain 
and strain-displacement equation for the vertical 
direction, noting the assumption 

zyzx kandk
yx

σσσσ == , , integrating with respect to 

z, and employing the displacement boundary 
conditions at the surface and at the bottom of the 
layer, one obtains the following relations: 
 

 
( ) 








+−= pzQz

E
wyxw

2
,

2

0
α  (A3) 

where 
 

 






 −= pHwE

H
Q 02

2
α

 (A4) 

 
and 

 
( )yx kk +−= να 1  (A5) 

 
Equation (A3) is now substituted in the combined 
equations of stress-strain and strain-displacement 
for the vertical shear stresses given by 
 

 Gwv
Gwu

zyyz

xzxz

τ

τ

=+

=+

,,

,,  (A6) 

 
Equations (A6) are integrated with respect to z and 
the remaining displacement boundary conditions 
applied. The resulting equations are solved for the 
shear stresses to yield 
 

 
yyyz

xxxz

p
E

GHwG

p
E

GHwG

,,0

,,0

63
2

63
2

ατ

ατ

−=

−=  (A7) 

 
Finally, Eqs. (A2) and (A7) are inserted in Eq. (A1) 
and rearranged to obtain 
 

( ) ( ) ( ) ( )yxwGHyxw
H
Eyxp

E
GHyxp ,

3
,1,

12
, 0

2
0

2
2

∇−=∇







−

α
α

 (A8) 
 
Equation (A8) is the differential equation for 
Variant 1 given in Eq. (1a). 
 
Appendix B: Derivation of Model 2 
 
Equation (5a) is derived in a similar manner as that 
of Eq. (A8) above, except that the continuity 
condition of displacements at Hz η=  should be 
observed in addition to the boundary conditions. 
This involves a relatively lengthy mathematical 
work. For brevity reasons, only the final forms of 
the coefficients are given below: 
 

( ) ( ) ( )
2

21
66

23
2

2323221 HaHbHbb ηηηβ −++
−

−=

 (A9) 
 

( ) ( )HH PPHHHHb
−+






 −+−= ηβ
ηη

β
ξ 241

1 2
1

24
 (A10) 
 

( ) ( )HH PPHHb
−++−= ηβ

ηη
β

ξ 1
24

41
2

 (A11) 

 
( ) ( ) ( ) HaHbHbb

2
22221

3 1
22

ηηξ −++
−

=  (A12) 

 

( ) ( ) ( ) ( )HPH
R

HaHbP H
H

H ηηηη η
η −++= 23242

2624
 (A13) 
 

HPH
R

HaHbP H
H

H −++= 23242

2624
η  (A14) 

 

HRHaHbP HH η++= 2232

26
  (A15) 

 
( ) ( ) ( )HaHbbR H ηηη 2

221

2
−

−
=   (A16) 
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Appendix C: Derivation of Model 3 
 
Equation (7a) has also been derived analogously, in 
which the compatibility condition of displacements 
at Hz η=  is observed in addition to the boundary 
conditions. This involves a much more lengthy 
mathematical work. Only at one stage in the 
process of derivation of the model, a term 
involving the product of the quantity He ζ−  and 
another negligibly small quantity is assumed zero. 
Considering the relatively large value of ζ used for 
the best-fitting curve and the rather small value of 
the coefficient of He ζ− , this approximation is 
easily justified. Only the final forms of the 
coefficients are given below for the sake of brevity: 
 

( )

HH
HH

H

PPe
R

HHbHar

rbHHerHb

η
ηζη

ζη

ζ
ζη

ζ
η

ζζ
η

ζ
ν

ζ
ν

ζ
η

ζ
η

ζ
νηλ

−+







+








+++








+−

−















+++=

−

−

22222

3
1

2
22

3
1

22
2

1

22
32

 (A17) 
 

 ζ
νδ rH −=

 
(A18)

 
 

 
( ) ( ) ( )HaHbbR H ηηη 2

221

2
−

−
=  (A19) 

 

 
HRHbHaP HH η++= 3222

62
 (A20) 

 

 
( ) ( ) HRHbHaP HH ηηη ηη ++= 3222

62
 (A21) 

24
1

3
1

2

44
1

2

2
221

3
122

2
~

2
2~

ζ
ν

ζ
δν

λ
η

ζ
ν

λζ
δν

ζ
νη

λ
δ

λ
δ

λ
δη

λ
δ

ζ
η

ζ
ν

λ
δκ

ζη
η

ηη
ζη

η

rrbHrrbeTrHb

HPHPHHP

TbRHaerP

H
H

HHH

HH
H

H

++







+−








−+

−−+





 ++





















++








+−−=

−

−

 
 (A22) 
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1

2

44
1

2
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2

2~1

ζ
ν

λ
η

λζ
ν

ζ
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λ

η
ζ

η
ζ
ν

λ
κ

ζη
η

ηη
ζη

η

rbHrbeTrHb

PHPTbRHaerP

H
H

HHHH
H

H

−



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


++








−−
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
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


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
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(A23) 
 

 
( ) ( ) 22

2
2221

3 2
1

2
HbHaHbb

+−+
−

= ηηκ   (A24) 

 

 
2

22 64
ζ

η
ζ

ηη ++= HHT H
 (A25) 

 

 
24232

2246
~ H

R
HbHaP H

H
η++=  (A26) 

 

     
( ) ( ) ( )24232

2246
~ H

R
HbHaP H

H ηηη η
η ++=  (A27) 

 

 yx rrr +=  (A28) 
 
 


