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ABSTRACT

This paper is presented in two parts. PART I deals
with the identification of the parameters of discrete
systems described by difference equations, using a
tailored form of the Kalman filter. PART Il describes
the methodology of stochastic controller design based
on the identified parameters found in PART I o
control the original noise-corrupted system. The
approach taken is that of optimal prediction based on
the solution of a linear Diophantine equation.

INTRODUCTION

Real systems are generally quite complex, not only
because they may need high order equations to describe
them but also because they may show nonlincar
behavior in some range of Lheir operation, and
additionally they are often corrupted by noise. The
engineer may in many cases do well to consider a
mathematical medel in place of the real system. For
operation ebout &n operating point, linearized
equations with unknown parameters of arbitrary order
may be introduced, to be identified in such a way that
the squared-error between the outputs of the real
system and the approximating model is minimized. If
the model is found to be satisfactory, then further
processing like controfler design can be attempted,
using the model! parameters, to control the real system.

PART I: PARAMETER IDENTIFICATION

Let a real system be described by the difference
cquation

Mr) +ayy(n 1)+ v a,y(n-p)
~bu(n-dy +bu(n d 1)
tetb_win d m) ()
+ c,w(n) +c,w(n-1)
e+ e @{(n-r}

inwhich a,=landthesetg,=1,.,p;b,,i=1,..,
m, ¢, i =1,.r andthe control delay 4 are all
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unknown. u,is the cantrol variabic and @, is the nput
noise. Equation (1) may be written, using the delay
operator z”* (i.e 2! yi)} = y(1-4)}, as

y(z-') - :"’_-dﬂ:l u(z™y
z N
(2)
+ C(z_t) (.I.)(Z-l)
A@E™H

where
A -l vaz? vy a,z?
Be™) ~b, + bzt v v b7 (3)

-1 | =¥
CEz™ ) -¢c, +cz27 vtz

This open-loop model can be represented as in g, 1:

Yk

1} v
k k
B/A

Figure 1 Open-loop mode] of noise-corrupted system

Obviously the noise may actually appear in the input
signal, or it may be generated either internally or in the
outpul section. Since the syslemn 15 assumed to be
linear, the prineiple of superposition enables us to
model] the noise as an additive one at the cutput.

There s an advantage in  using this model for
paramecter estimation as one can  obtain  the

estimates A, B with@=0and A.¢ with v = 0. In

fact an average value can be obtained for vector 4






32
with

P

= Xy (10)

In the above presentation matrix inversion has been
avolded by processing, not a bunch of data, but one
output pont at a time. To ¢lanfy this problem further
let the firsi data vector for a first order model be

X7 [y D uW]
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It 1s only at this starting point that a problem of this
type is met as there is no other point at which matrix
inversion 1is required. In this paper the problem is
avoided by introducing the following approximalion:

VIN 1), 0 ]
(12)
b v (V)

This step unmediately leads to the initial eshmated
parameters

P (%) -

so that 1
L [YIN-D ¥(N-1)
_ _ R - 4] (N
P x AT - Y- #(N)yN-1) (n 1 Uy [P
POV DN w0 uHM) (13)
) {ym-*ym' 1)]
This malryx is singular and cannot be mverted. YA
For a 2™ order system one sets the inibal data vector
X - vV D pN D) w(N) uN-D)]
with
viHN-1) vIN Dy(N-2) —uin Dy(N 1
pri T | YYD YAN-2) u(N 1) y(N-2)
v (N YN D —u (MY 2) u(N-1) 1 (V)
—u(N DuN-1) -—uN-1)v(¥ 2) wI(N 1)
yiN-1) 0 0 0
0 PHN-D) 0 0
0 0 u (M) 0
0 0 0 ul(N-1)
giving
! 0 0 0
yIN-1)
-y(N-1
0 . 1 0 0 Y (i 2;
N 2) ~V(N-
8, - ’ | o |P®
0 0 0
u’(N) u(N-1}
0 0 _
ul(N 1))
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The initiglly diagonal covariance mairix P becomes
pon-diagonal as further data become available, as per
cquations (8) and ().

The coeflicient vector € connecled wilh the poise

input is found in exactly the .ame way. Furthermore,
at the end of each iteration the approximate output

Yl = ~dyy(n-1) - &, y(n-2}

“w - dyin-q)
(14)

+ g‘n(n) 4t Z;’u(n-r)

+ E,U(H) +oe t é'm(u—v)

may be calculated with appropriale initial conditions
and the squared-erTor l_}(n) - yw(n)r computed to

be used as a slopping criterion.
PART II: STOCHASTIC CONTROL

Two main approaches to modern controller design
have developed over the years. One approach starts off
with a state space model and uses the optimal Kalman
filter for state (and/or parameter) eslimation and gees
on to compute the optimal control signal, making use
of the separation principle to separate the estimation
task from the control one.

The second approach siarts from a polynomial
representation of the syslem, makes a d-step-ahead
optimal prediction of the output by solving a linear
Dicphanline equation and gees on to find the necessary
optimal control sequence.

The first approach may ofien need more extensive
computation as it deals with matnices. It is also more
thorough in the depth of ils reatment. The second
approach caly requires relatively simple operations on
polynomials, allhough cenain aspects of these
operalions are not as convenient as one would wish, m
particular for machine computation. In this paper we
attempt o present the main features of the second
approach which we then apply to some of the
parameter identification examples treated in PART 1.

OPTIMAL PREDICTION

As almeady discussed in PART [, a discrete linear
system can be modeled by Lhe polynomial

AG@ Ny, = 27¥B@ Y, + CzHw, (15

where y, is the output sequencg, w the control
sequence, and &), & zero-mean white process noise with
vanance ¢. d is the delay in control, 1.¢. u, affecis the
output values at times k+d and later.

The polynomials A(z ™), B(z™"), C(z™") have the

general forms

Az =1 +alz‘l temraz™
BizVy=b, vb izt v tb 2™ b 0D {16)

CzlY=c,ve !

tere Z

= -n
]Z

where Cz'} is assumed to be stable, i.e. the zeros of
the nose transfer funclion lie on or inside the uni
circle. The reason for this will be clear later on in the
discussion.

Now, a d-step-ahead prediction of the output y,.,, in
terms of the outputs at &, &-1, ... can be made by first
meking the foliowing division

-1 -1
M = F(z']) +z7d ﬂ‘.___) (17)

A@Ez™ Az

where division continues until z< can be factored out of
the remainder [ 2,3]. This gives the scalar Diophantine
equation

Ce N -AHFE Y tz96GE™  (18)

for which Fyz'') and (5¢z') are the solutions with the
general forms

Fey - f +fiz7h+ o
G(z—i) _ go + 812_] 4 gn—lz_{"_l)

. J;_l I =411

(19)

Next, multiplication of Equation (15) by Fz') and use
of Equation (18) leads to

- Giz™) N Fiz )Y B(E™ u
cey " cez™

Yied
(20

tFETY @,

It is now easy to see why the zeros of Cyz'') must not lie
outside the unif circle.
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For j -d,d 1, ,d-n, 0., hasibeforms T
T(7) - L 2, Gd_j
i~

G BF, (32)
Foak ~ 2Vt Hy ¥ 5T pe -1
C Ty - X pAr,,z f+b_((z YRtz ™Y
dmu o
) (Jd_l ’ BFd_]
Yiewd it C Mt C Yy

Notice that (he control in Fquation (31) immedately
gives a closed-loop controller (Fig. 2) built around the
open-loop svstem alreadv shown in Fig 1:

G, BF,
N o Ay . d a, v n
Vi e C Ve oo The stability of (he above closed-loop system depends

] on the characicnstic equation
so (hat Equation (29) becomes

21 Tiz™h
G, BF G BF, BED .« 27 1y
_dv ¥ ..a_[u + d11-‘+ d1u 'I("_I] A ,i)
ok Pl =7 c Alz NE
re
Gd-n BPdn
LR T T e, A TEY A IE YT 0 3y

Sk Tkt N Yk

CQ/Ty '\/ B/A

LT1/T2

Figure 2 Closed-loop stochastic control system

. Thus, whenever a model with parameters 18 .0
This can be wnitten as

and d is determined using an wentification algonthm.
7yt A TS NP P!
Ha e Ty CeHPE s (31 the stahility of the system should be checked rom
:-i(z_])T:(Z_i} + B{:"}]"]{:"):'“’ 0 whae
where
Tz and 1 (£ 1} are tound from (32} using the
identified parameters.
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The output sequences are computed for Lhe following
two eases using he eorresponding diserete equations:

iy Open-loop system

Az '])vk - H{z _1)34‘r

A4z Ne,, - Cz Ho
Z )&y od (34)
Verd Vi b €

o,
Vi =7 Ve

ii) Controlled closed-loop system

The equations here consist of the set n (34) with s,
replaced by wy |, plus the following additional ones:

,zm, CzTYoeMNs,
Tz, ey, (35)

u, om, [

Remark: In the example svstems studied in this paper,
Lthe ontput y, 15 generated from the onginal cquahon
wang the parameters. Az ) By, Crz?y | and delay
However, the eomlrolier 1s designed using the estimated

paraieters Atz 'y Biz YLz anddelay d

Computational results:

For PART I - fdentification

Example |

Let the onginal systemn be desenbed by
vim 05yvin 1)+ 025v(n 3)

uin 1+ 05k 2)+ 03uin 3)

vy + 025win 1)

This 15 & systemn with poles at -0.5, 05+;051¢. a
stable system with poles well within he unit cirele, and
unit delay in the control. Maodels of va~*ous orders with
ditferent combinations of u, w, and delay d can be tried.
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Estimated parameters

First madel:

a) 1"order {4, . l;n , )

A B & 066

f;o (.06 (approximation poor)
A.Ca 061 ;

¢, 103 (approximation poor}
A, 4 0635

by Morder {4, . h, . h ¢ .c"])

T sy

A Bd ves

h\” - 0.02,:‘1_! 1.04 fapprovimation poor)
ACa 040,

¢, Lo 03U dapproamation hetter)
A vd - 083

Second model

a) 2" order (&, | dy . B h )

il I o
A Big - 098 4 049,
A.Cra 083, 4 036.¢ - 1D

Ay, td = 0905 . 4, 0425

AR a Y8 | 049

b, 0. b -09Y

4,04 104 4, 049,
¢, L0 & 026
A, vd 101 a4 049

A 0. 5;1 = 0.99 (appreximation acceplable)
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Third model:

Iorder (@, ,4,,4;,5,,b

10 1565 6)

A,B:4 =-097,4, =047, 4, =002,

, = 0,8 =099
A,C:4 =-054,4,=005,4 -023,
&, = 10,¢ =023
Ezample 2

Let the oniginal system be

vin) - 1905 y(n-1) + 0.905 y(n )
=uf{n 1) + 0.9 u(n-2)
+ win) + 0.25win-1)

Thas system has a pole on the unit circle and another at
0.905. Thus, it is & marginally stable system.

First model: a) 1% order
yn) + &y y(n-1)
= 50 u(n-1) + &, wim
Estimated parameters:
A.B: d,=-10 ;5 --0.11 (unreliable)

A,C:4,=-101;¢,-112

b) Another first order model
ymy+d, yin-1)-b, u(n-1)y + b, u(n-2
+¢, win +¢é, win-1)

Estimated parameters:

AB:4 101,56 013,
6, 0.99 (unreliable)

A,C 4, 101, 103,¢ 124

Remark: This is not a suilable model as € has a zero

outside the unit circle.

Second model:  a) 2™ order
yi) + 4, y(p-1) + &, y(n-2)
= 50 v(n-1) + !;l u(n-2) + é, win)
Estimated parameters:

A B:a =-195,4,-0956,--003

~ »

A,C:6,=-190.4,-090.¢ - 1.07

Average values:

- 19254, 0925,

b, =-003,8,-107
b) Anaother second order moxdel
yimy +a vin 1) + 4, vin 2)
- 50 uin 1) + J;] win )
tE w4 win 1
Estimated parameters:
A.B: a

L1954, 095,

b 010 B 104

AL C 4 18 .4 086
¢, LO5 ¢ {1 35
A a FONS g 0905
average :
Third model: ay 3™ onder
Vin) o+ dl vin 1y o r'}: e 2y soavtn 3

—byu(n 1y v b utn 2y v ¢ wim
Estimated parameters

A.B: 4 - -237.4, 184,

=T
|

L 044 b - 003

s

,C:a - -186, 4,

082,
a, = 005, ¢ - 107

o

Remark: valuesof A are widely different.
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b) Another third order model
In this case one gets
A, B:d =-237,4,=181,4, - -044,
b,=-004, 5 =104
,Cid =-126, 4,=-034, 4,-059,

&,=104,¢ =09

Remark: valuesof 4 are widely different.

The graphs of the exact and approximate responses
using some of the models in Examples | and 2 are
shown in Fig. 3, in which the horizontal axis shows the
number of samples.

For PART II : Stochastic Control
EXAMPLE 1
Using 1* order model (b):

Ay =1 05377

Bz = -002 + 1.0477

Ciz™") - 1.01+039z7

Ford=1,F,=101,G,=0.925
Ford=2,F,=1.01H.9257} ; G,=0.49

Ford=1,T, =0925

_ Blo)F o) -002x101 _ _0.02
o C(O) 101 .

2
- - - LS
T1=BF1+%ZCR=BF1+—53—C

2 o
= (-002 + LO4z (L0 5072101 +039z 1)

= 1.01(-0.02 - 5072 + (105 - 1857127

Forr,=1,T,=-505-18.457"
A check on stability shows that this 1s a stable system,

Then

Journal of EAEA, Vol 13, 1996

M CE™) _ 101 « 03927
S Tz -505 184527
0.02 - 0007727
1+ 0365z

Le.

m, - 00255, 0.0077s,  -0365m,

L T 0.925
Yo T,z -505 1845727

00183
1 +0365z""

i.e

fi - 00183y, 0365/

Similarly, for r= (1.5, one gets the equations
T, = -12645 - 38252 -

with
m, - -008s,  0031s,_  0302m,_,

J, - 0073y, - 0302, ,
Using 2™ order model (5):

A"y = 1-101z271 + 049772

B(z)y - 099 (delay d - 2)
Ciz™
Then,

H

10-026z7"

Ford=1,F=1,G,=075-049z"
Ford=2,F,=140.75z",(G,=0268 - 0368 2"

Now, ford=2, r,=1, 75 =2+048 2" givinga
stable system having the dynamic controller equations
(in part)

m_=05s, - 0135, | - 042m,_,

Je

0.134y, - 0.184y, | - 0.24f,
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EXAMPLE 2

Using second meodel (5): but with change in
Be™).
Az = 1-1.905z7 + 0.905z 72
Bz =104 (butwithd = 2)
Gz = 1.05+035z7
gz =05 + 2z (arbitrary choice)
d=2:F,=105+235z",G,=3527-2.127 2"

_ B)F,0) _ 1.04x1.05

, - - 1.04
C(o) 1.05

-~
I

G, = 3527 - 2127z

roz o =1
, = BF + 2CG™

[

!
[

1.04(1.05 + 235:".)
+ 0.962r2(1.05 + 03527
= 1092 + 244427 + 101]
+ 0337227
letr,=4:7,=1725+7836z"

Then

m, _ CQ _ (1.05+035z7) (0.5:z7)
5, T, 1725 + 783627

_ 0.03+0071z7+002272
1+ 045427

m, = 0.035, +0.071s, , +0.02s, , - 0.454m,

Lo T 3527 - 212727

Yo T, 1725 + 7836z}

_ 0204 - 012377
1 + 045427

fo = 0204y, - 0123y, - 0.454f,_

Open loop and controiled system responses are shown
in Fig. 4, in which the horizontal axis is the nurnber of
sampies.

CONCLUSION

The parameter identification algorithm works quite
well even on systems that are unstable. The stochastic
cantrotler works well on stable systems if the 1dentified

vector ¢ lies inside the unit circle. However, the

controller fails to work if the original system is
unsiable. This means that an unstable svstem must first
be stabihzed before stochastic control 15 attempted.

The 1dentficaion problem and the control problem are
treated separately m the paper.  An obvious
improvement 15 the machine computation of the
solution te the Dhophantine equation so  that
wlentification and control can be done m one. This is
necessary if, for instance, adaptive control 15 to be
attemmpted.
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