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ABSTRACT 

This paper is presented in two parts. PART I dea'8 
with the identification of the parameten of discrete 
systems described by difference equations, using a 
tailored form of the Kalman filter. PART II describes 
the methodology of stochastic controller design based 
on the identified parameters found in PART I to 
control the original noise-corrupted system. The 
approach taken i8 that of optimal prediction based on 
the solution of a linear Diophantine equation. 

INTRODUCTION 

Real systems are generally quite complex, not only 
because they may need high order equations to describe 
them but also because they may show nonlinear 
behavior in some range of their operation, and 
additionally they are often corrupted by noise. The 
engineer may in many cases do well to consider a 
mathematical model in place of the real system. For 
operation about an operating point, linearized 
equations with unknown parameters of arbitrary order 
may be introduced, to be identified in such a way that 
the squared-error between the outputs of the real 
system and the approximating model is minimized. If 
the model is found to be satisfactory, then further 
processing like controller design can be attempted, 
using the model parameters, to control the real system. 

PART I: PARAMETER ID'ENTIFICATION 

Let a real system be described by the difference 
equation 

y(n) + a1y(n-1) + ... + a,.Y(n-p) 

=b
0
u(n-d) +b1u(n-d-l) 

+ ... + b,,.u(n - d -m) 

+ c
0

<a>(n) + c1<a>(n-l) 

+··· +c,~(n-r) 

(1) 

in which a. = 1 and the set a, = I , .. ., p ; b 1 , i = I', .. ., 
m; c,, i := 1 , .. ., r and the control delay dare all 
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mknown. 111 is the cxdrol variable and t.>1 is the input 
noise. Equation (1) may be written. using the delay 
operator z·• (i.e z"1 y(t) = y~-.d)), as 

(2) 

where 

{W'l = 1 + a z-1 + ... +a z-P 
I p 

B(z-1) = b
0 

+ b1z-1 + ... + b,,.z-"' (3) 
C(z-1) = c + c z-1 + ... + c,z-' o I 

This open-loop model can be represented as in F'ig. l : 

C/A 

B/A 
+ 

Figure 1 Open-loop model of noise-corrupted system 

Obviously the noise may actually appear in the input 
signal, or it may be generated either internally or in the 
output section. Since the system is assumed to be 
linear, the principle of superposition enables us to 
model the noise as an additive one at the output. 

There is an advantage in using this model for 
parameter estimation as one can ebtain the 

estimat.es ..iJ with<a>!!!Oand .A,c with u = o. In 

fact an average value can be obtained for vector A 
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During p1runetct" estimation the inputs ut, ~are 
made to be software generated random signals to 
&9rc that the input remains per3istently exciting, that 
is to say that it will always enable us to extract new 
infonnatioo fian the output as new output data become 
available. 

prohibitive. However, a simplification based on the 
Matrix Invm:ion Lemma [I] leads to the iterative form 

LEAST SQUARES SOLUTION 

Let c • 0 in Equation (I), and assume the system has 
been running for some time. This is to avoid the 
transient period after starting. A sequence of outputs 
can be written for a p"' order model (for d = 0) as 

where 

y(N) = -a1y(N-l) - ai)'(N- 2) - ... - apY(N p) 

+ b
0
u(N) + b1u(N I) • ... 1 bmu(N m) 

y(N+l) = -a,y(N) - a2y(N I) - ... apy(N P' I) 

+ b
0
u(N+l) + b1u(N) + ... 1 bmu(N m+l) 

y(N+p) - <i1y(N+p) - <i2y(N+p - l) - ... - apY(N) 

+ b
0
u(N+p) + b1u(N+p l) t ... • bmu(N-m+p) 

or, in matnx form 

y(N- 1) y(N 2) ··· -y(N-p) u(N) u(N- 1) ... u(N m) 

- y(N) y(N- 1) ... -y(N-p+l) u(N+ l) u(N) ... u(N-m+ l) 

- y(N+p) -y(N+p-1) ... - y(N) u(N+p) u(N+p I) u(N+p m) 

This can be written in the sttll simpler form x6 = y 

for which the well-known least-squares method gives 
the so-called nonnal solution set 

ap 

ho 

bl 

y(N) 

y(N+l) 

y(N+p) 

(6) 
Kalman gain 

A direct solution of (6) is generally not attempted as the 
matrix inversion of the large data matrix can be 

(7) 

(4) 

(5) 

(8) 

(9) 
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with 

(10) 

It is only at this starting point that a problem of this 
type is met as there is no other point at which matrix 
inversion is required. In this paper the problem is 
avoided by introducing the following approximation: 

In the above presentation matrix inversion bas been 
avoided by processing, not a bunch of data, but one 
output point at a time. To clarify this problem further 
let the first data vector for a first order model be 

-I ( r) [y
2
(N- l) . 0 l P1 = X 1X 1 ~ 
0 u 2(N) 

(12) 

xt = ( - y(N- 1) u(N)] 
This step immediately leads to the initial estimated 
parameters 

so that 

P,-• = x,x.1 = [yl(N-1) -u(N)y(N-1)] (11) 
-y(N- l)u(N) u 1(N) 

This matrix is singular and cannot be inverted. 

For a 2nd order system one sets the initial data vector 

I 0 

6, = yl(:-1) _1_ [-y~~~l)]y(N) 
ul(N) 

= [-y(N)fy(N-1)1 
y(N)fu(N) 

X,r = ( -y(N- 1) - y(N-2) u(N) u(N-1)) 

with 

giving 

y 2(N-l) 

P
-1 T . y(N-2)y(N- l) 

= x1x1 = 1 -u(N)y(N- 1) 

y(N- l)y(N- 2) 

y 2(N-2) 

-u(N)y(N- 2) 

··· -u(n-l)y(N- 1) 

··· - u(N- l)y(N-2) 

··· u(N-l)u(N) 

-u(N-l)y(N-1) -u(N- l)y(N- 2) ··· 

y 2(N-l) 0 0 0 

0 y 2(N-2) 0 0 
"' 

0 0 u2(N) 0 

0 0 0 u2(N-l) 

1 0 0 0 
y 2(N-l) 

0 
1 0 0 

- y(N-1) 

~I 
y 2(N- 2) -y(N-2) 

y(N) 
u(N) 

0 0 0 
u2(N) u(N-1) 

0 0 0 1 

u2(N- l) 
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The initially diagonal covariance matrix P becomes 
non-diagonal as ftu1her data become avmtable. u per 
equations (8) and (9). 

The coefficient-vector C CQllilCCtcd with the noise 

input is found in exactly the ...ame way: Furtbcnnore, 
at the end of each iteration the approxilmtc output 

y.,J..11) = -a1y(11-1) -a2y(11-2) 

- .•. - a,y(11-q) 

+ b.11(11) + ··· + b, 11(11-r) 

+ c.c.>(11) + · .•. + c,c.)(11-v) 

(14) 

may be calculated with appropriate initial conditions 

and the squared-error ~11) - y-(11)f computed to 

be used as a stopping criterioo. 

PA.RT D: STOCHASTIC CONTROL 

Two main approaches to modem controller design 
have developed over the years. One approach starts off 
with a state space model and uses the optimal Kalman 
filter for state (and/or parameter) estimation and goes 
on to compute the optimal control signal, making use 
of the separation principle to separate the estimation 
task from the control one. 

The second approach starts from a polynomial 
representation of the system, makes a d-step-ahead 
optimal prediction of the output by solving a linear 
Diophantine equatioo md goes on to find the necessary 
optimal control sequence. 

The first approach may often need more extensive 
computation as it deals with matrices. It is also more 
thorough in the depth of its treatment. The second 
approach oo1y requires relatively simple operations on 
polynomials, although certain aspects of these 
~are not as convenient as one would wish, in 
particular for machine computation. In this paper we 
attempt to present the main features of the second 
approach which we then apply to some of the 
parameta identification examples treated in PART I. 

OPTIMAL PREDICTION 

As aJ.ady discussed in PART I, a discrete linear 
system cm be modeled by the polynomial 

A(z-1)y., = z°""B(z-1)ut + C(z-1)wt (15) 

where Yt is the output seq~. u the control 
""'l'mcc. IOl:l ~a 2m>-lDC8ll white process noise with 
variance q. dis the delay in control, i.e. "t !11fects the 
output values at times k+d and later. 

The polynomials A(z-1), B(z-1), C(z-1) have the 

general forms 

l
A(z-1) = 1 +olz-1 r- +o.z.,. 

B(z-1)'"b~+b1 z-• +-+b.z-,b."O 

C(z-1) = c: + c1 z-1 + ·•• +c.z ... 

(16) 

where C(z-1) is asswned to be stable, i.e. the zeros of 
the noise transfer fi.mction lie on or inside the unit 
circle. The reason for this will be clear later on in the 
discussion. 

Now, a d-step-ahead prediction of the output Yt+d in 
terms of the outputs at k, k-1, ... can be made by first 
making the following division 

(17) 

where divisioo cootinues until z"' can be factored out of 
the remainder [ 2,3]. This gives the scalar Diophantine 
equation 

for which F(z1
) and G{t1

) are the solutions with the 
general forms 

l F(z -1) = fo + f. z -1 + ... + f;i_1 z -(d-1) 

(19) 
G(z-1) = go + g, Z -I + ... + gn-1 Z -{n-1) 

Next, multiplication ofEquation ( 15) by F(z.1
) and use 

of Equation (18) leads to 

G(z-1) F(z-1) B(z -1) 
Yt+<1 = --Yt + "t 

C(z -1) C(z -1) 
(20) 

It is now easy to see why the zeros of C (z.1
) must not lie 

outside the unit circle. 
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Let Y..,., be the optimal prediction, found by 

minimizing the mean-squared error 

(21) 

giving the minimwn-variance predictor 

(22) 

with the prediction error "Y • ..,, = Fw•"'' and the 

minimwn mean-square error 

(23) 

A more general formulation of the prediction problem 
is to use the quadratic performance index [ 4) 

(24) 

which puts weights on the output yk+d, the reference 

signal s*, and the control signal u* . P, Q, R can have 
the general forms 

P(z-1) = 1 +p1z-1 +··· +p z-n, n, 
Q(z-1) = qo + qlz-1 + ... + q,,oz-no 

R(z-1)=r
0

+rz-1 +···+r z-nR 
I "R 

(25) 

Nhere nP is the degree of P (z.1
), etc. One can 

ntroduce the desired emphasis into the performance 
ndex by the proper choice of the coefficients p,, q,, r,. 
;or instance, P (z"1

) = 1, Q = R = 0 corresponds to the 
simple minimwn variance controller. P, R t- 0, Q = 0 
corresponds to the regulator problem, whereas P, R, Q 
t- 0 deals with the tracking problem. Consider the term 
Pyt+d in the performance index: 

P( -1) (l -I -2 z Yk+d = + P1 z + P2Z 

+···+p z-"')Yk·" n, ..,. 
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All values of y for which d>n
11 

will have to be 
predicted in terms of y., Y.t-i , ... , so that for j s d we 
have 

(26) 

in which, from the orthogonality principle, y•·JI• and 

y.,JI• are orthogonal to each other. Thus, as before, 

the optimal predictor for YA+JI• is found by making a 

j-step long division of CIA with the result 

C(z-1) = A(z -1) F.(z-1) + z-j G .(z -1) 
J J 

(27) 

where Fj, G1 are found for all d-nP s j s d. In practice 
ooecanfind F1 ,G1 ford= 1, F1 ,G1 ford=2,etc.in 
a single long-division. 

The optimal }-step-ahead predictor is of the form of 
Equation (22): 

G. BF 
' - 1 1 O<. d Yk•Jlk - C Yk + C uk-d•J • 1 ~ (28) 

It is interesting to note that yk•Jlk depends, not just on 

u.., but on also earlier values of the input. 

An optimal control law may be developed for the 
general tracking problem, using the performance index 

in (24) where Y1c+<1 is replaced by Yk+<i!k , thus 

having a ueterministic cost function for which 

aJk 
- = 0 leads to the equation 
auk 

(29) 

where 

_B_( o_) F....;d;...( o_) "" b 
C(o) 0 (30) 
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For j = d, d - 1 , ··· , d - nP ,y1+jlk has the forms 

so that Equation (29) becomes 

( 
Gd-n BFd..,, ) 

+··· +p --' Y1+--' "1c n, C C -n, 

CQ/Tz B/A 

(32) 

Notice that the control in Equation (31) immediately 
gives a closed-loop controller (Fig. 2) built around the 
open-loop system already shown in Fig. l: 

The stability of the above closed-loop system depends 
on the characteristic equation 

B(z-1) -d T,(z-1) -- 0 
--z . + 1 
A(z-1) T2(z-1) 

i.e 

(33) 

C/A 

Figure 2 Closed-loop stochastic control system 

This can be written as 
• 

where 

Thus, whenever a model with parameters A. 8. C 

and J is detennined using an identification algorithm, 

the stability of the system should be checked from 

A(z-1)T
2
(z-1) + B(z-1)T

1
(z-1)z-d = 0 \\h!re 

T1(z"1) and 7; (i ) are found from (32) using the 
identified parameters. 
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36 Parameter Identification and Stochastic Control 

The output sequences are computed for the following 
two cases using the corresponding discrete equations: 

i) Open-loop system 

A (z -1)vk = B(z -1)sk 

A(z-1)ek+d = C(z-1)wk+d 

Yk+d = vk + ek+d 
• -d 
Yt = z Yk+d 

ii) Controlled closed-loop system 

(34) 

The equations here consist of the set in (34) with st 
replaced by ut , plus the following additional ones: 

T2 (z -1)mk = C (z -1) Q(z -t) sk 

T2(z -t)fk = Tt (z -1)yk (35) 

Remark: In the example systems studied in this paper, 
the output Yt is generated from the original equation 
using the parametersA(z·~, B(z-1

), C(z-1), and delay d. 
However, the controller is designed using the estimated 

parameters A(z -1
), BV1

), C(z- 1
), anddelay d 

Computational results: 

For PART I: Identification 

Example 1 

Let the original system be described by 

y(n) - 0.5 y(n - 1) + 0.25 y(n - 3) 

= u(n - 1) + 0.5u(n - 2) + 0.3u(n - 3) 

+ w(n) + 0.25w(n - l) 

This is a system with poles at -0.5, 0.5 ± j 0.5, i.e. a 
stable system with poles well within the unit circle, and 
unit delay in the control. Models of varous orders with 
different combinations of u, w, and delay d can be tried. 
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Estimated parameters 

First model: 

A', J3 : a1 = - 0.66 ; 

b
0 

= 0.06 (approximation poor) 

A , c : a1 = - 0.61 ; 

c
0 

= 1.03 (approximation poor) 

Aav ; a, = - 0.635 

A,B:a, = -o.66; 

6
0 

= - 0.02, 61 = 1.04 (approximation poor) 

.4, c: a 1 = - 0.40 ; 

c
0 

= 1.0 I , c1 = 0.39 {approximation better) 

A..., ; a1 = -0.53 

Second model: 

a) 2°d order (a, , a2 , 60 , 61 , ca> 

.4 • .8 : a 1 = - o.98 . a1 = 0.49 , 

b: = 0 , b1 = 0.99 (approximation acceptable) 

.4 . c : a1 = - o 83 , a1 = o.36 • c. = 1.0 

.4 .. ; a, = - o.905 • a1 = 0.425 

A , J3 : a, = - 0.98 , a2 = o.49 , 

b
0 

= 0 , b1 = 0.99 

A , c : a, - 1.04 , a2 = o.49 , 

c
0 

1.0 , c1 ~ - 0.26 

Aav; a, = - 1.01 , a2 = 0.49 
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Third model: 

.4 • n : a1 = -o.97 • a2 = o.47 • a3 = 0.02 , 

· b
0 

= 0 , b1 = 0.99 

.4 , c: a 1 = -0.54 , a2 = o.o5 , a3 = 0.23 , 

c
0 

= LO , c1 = 0.23 

Example2 

Let the original system be 

y(n) - l.905y(n-l) + 0.905y(n - 2) 

= u(n - 1) + 0.9 u(n-2) 

+ w(n) + 0.25w(n- l) 

1his system bas a pole on the unit circle and another at 
0.905. Thus, it is a marginally stable system. 

Finl model: a) 111 order 
. t 

y(n) + al y(n-1) 

= 6
0 

u(n-1) + c
0 

w(n) 

&timated parameters: 

.4 ,B : a1 = -1.0 ; 6
0 

= -0.11 (unreliable) 

.4, c : a, = -1.01 ; c
0 

= u2 

b) Another first order model 

y(n) +al y(n-1) =ho u(n-1) +bl u(n-2) 

+co w(n) +cl w(n-1) 

&timated parameters: 

A,B: a1 1.01, 6
0 

0.13, 

61 0.99 (unreliable) 

A .A. 
A,l- :· a

1 1.01 , co 1.03 .c. l.24 

Remarlc-. 1his is not a suitable model as C has a zero 

outside the unit circle. 

Second model: a) 2nc1 order 

y(n) + al y(n - 1) + a2 y(n - 2) 

"' 60 u(n-1) + 61 u(n - 2) + c
0 

w(n) 

&timated parameters: . 
.A ,B: a1 = -1.95 ,a2 "' o.95 ,h

0 
= -0.03 

A A A A A 1 07 A , C : a1 = - 1.90, a2 = 0.90, c
0 

= . 

Average values: 

a, = - 1.925 , a2 = o.925 , 

h
0 

= -0.03 , C
0 

= 1.07 

b) Another second order model 

y(n) +a, y(n - 1) + a2y(n - 2) 

= b
0 

u(n - 1) + b1 u(n - 2) 

Estimated parameters: 

.A , B : a, = - 1.95 , a2 ~ o.95 • 

bo = - 0.10; 6, 1.04 

.A 'c: a, = - l.86 • a2 0.86 

co = 1.05 'c, 0.35 

.A · a -!.905 . a, o.9os 
averaae · I 

Third model: a) 3rd or<lcr 

y(n) +a, y(n- 1) t a~ y(n 2) + ti3y(n-3) 

= b
0 

u(n - 1) + b1 u(n - 2) + {;
0 

w(n) 

Estimated parameters 

.A , 8 : a, = -2.37 , a2 = 1.84 , 

. .A , c : a, = - 1.86 , a2 = 0.82 , 

a3 = 0.05 , co = 1.07 

Remark: values of A are widely different. 
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b) Another third order model 

In this case one gets 

1 , .B: a1 = - 2.37, a2 = 1.s1 , a3 = - o.44, 

60 = - 0.04' 61 = 1.04 

A, c: a1 = - 1.26 , a2 = -0.34, a3 =0.59, 

c0 "' l.04 , c1 "' 0.96 

Remark.: values of A are widely different. 

The graphs of the exact and approximate responses 
using some of the models in Examples l and 2 are 
shown in Fig. 3, in which the horizontal axis shows the 
nwnber of samples. 

For P AllT II : Stochutic Control 

EXAMPLEl 

U1ing 1" order model (b): 

A(z-1) "' l - 0.53z -1 

B(z -1) = -0.02 + l.04z -l 

C(z -1) = l.01 +0.39z-1 

Ford= 1, F 1 = 1.01 ; G1 =0.925 

Ford= l , T1 = 0.925 

b = _B(_o_) F_d_(o_) 
o C(o) 

- 0.02 x l.01 

l.01 
-0.02 

= (-0.02 .. l.04z -1)(1.0l) - SO r;(l.01 .. 0.39z -1) 

= 1.01(-0.02 - SOr.) .-(1.0S -19.sr;)z-1 

For r. = 1, T1 = -50.5 - 18.45 z·• 

A check on stability shows that this is a stable system. 

Then 

Jourlllll of EAEA, Vol. 13, 1996 

i.e. 

1.01 + 0.39z-1 

- 50.5 - 18.45z -I 

- 0.02 - 0.0077 Z -I 

1 + 0.365z-1 

ft Ti (z-1
) 0.925 

Y1c T2 (z-1) - 50.5 - 18.45z-1 

- 0.0183 

l + 0.365z-1 

i.e. 

ft = - 0.0183 Y1c 0.365ft_1 

Similarly, for r = 0.5, one gets the equations 

T2 = - 12.645 - 3.825z -1 

with 

mt = -0.08 s1c 0.031s1r-i - 0.302m1c-i 

ft = - 0.073 Y1c - 0.302ft_1 

Using 294 order model (b): 

A(z-1) = l-l.Olz -1 + 0.49z-2 

B(z -1) = o.99 (delay d = 2) 

C(z -1) = l.O -0.26z-1 

Then, 

Ford= I, F1 = l ; G1 =0.75 - 0.49 z·• 
Ford= 2, F1 = l +o.75 z·• ; G1 = 0.268 - 0.368 z·1 

Now, ford= 2, r 0 = l , 7; = 2 + 0.48 z·1
, giving a 

stable system having the dynamic controller equations 
(in part) 

mt = 0.5 st - O.l3s1c-i - 0.42mt-I 

ft = 0.134y1r - 0.184Yt-l - 0.24ft_1 
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EXAMPLE2 

Using second m~el (b): but with change in 

B(z-1). 

A (z -1) = l - l.905z-1 + 0.905z-2 

B(z -1> = t.o4 (but with d = 2) 

C(z-1) = l.05 +0.35z-1 

Q(z-1) = O.S + z -t (arbitrary clX>ice) 

d=2: F2 = 1.05 + 2.35 z·• ·; G2 = 3.527 - 2.127 z·• 

b = _B_(o_) F_d_(o_) 
o C(o) 

l.04 x 1.05 = 1.04 
l.05 

T1 = G2 = 3.527 - 2.127 z -1 

= l.04(1.05 + 2.35z-1) 

+ 0.962 r;(l.OS + 0.35z -1) 

= 1.092 + 2.444z-• + 1.01~; 

+ 0.337 r; Z -I 

Let r 0 = 4 : T2 = 17.25 + 7.836 z·• 

Then 

= 

(l.05+0.35z-1) (0.5+z-1) 

17.25 + 7.836z -1 

0.03 + 0.071 Z -I + 0.02z -l 

l + 0.454z-1 

fk = Ti 3.527 - 2.127z-1 

17.25 + 7.836z-• 

0.204 - 0.123z-1 

1 + 0.454z-1 

fk = 0.204y.t - 0.123yt-1 - 0.454fk_1 

Open loop and controlled system responses are shown 
in Fig. 4, in which the horizontal axis is the nwnber of 
samples. 

CONCLUSION 

The parameter identification algorithm works quite 
well even oo systems that are unstable. The stochastic 
cootroller worics well on stable systems if the identified 

vector C lies inside the unit circle. However, the 

controller fails to work if the original system is 
unstable. This means that an unstable system must first 
be stabilized before stochastic control is attempted. 

The identification problem and the control problem are 
treated separately in the paper. An obvious 
improvement is the machine computation of the 
solution to the Diophantine equation so that 
identification and control can be done in one. This 1s 
necessary if, for instance, adaptive control is to be 
attempted. 
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Figure 3-1 Responses of actual (y,,.,J and identified (yapprm) systems: Example I, first model 
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Figure 4-1 Open-loop response (y ._) and controlled response (y .-): Example 1, first order 
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Figure 4-3 Open-loop response (y~ and controlled response (y_J: Example 2, second order 
model, 100% noise 
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