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ABSTRACT 

This paper pre&ent.r dynamic behaviour analy&i& and 
time hUtory of re&pome& of a flexible arm. Lagrange 
eq11atiom an e1nployed to develop the governing 
equaliOm of 1nOlion which are dUcretized by u&ing the 
finite element 1nethod. An illu&tratiw example of a 
pin-pin bemn-lih fk:.cible ann if treated and results 
obtained an pre&ented. 

INTRODUCTION 

In most engineering applications, an8lysis of multi­
body systems or mechanisms is done under the 
assumptioo that links ll"C rigid. A link is asswned to be 
rigid if any pair of its material points do not allow 
relative displacement. In pnictioe, however small the 
deflcctioo may be, any loaded link is subjected to 
defoonatioos which, in most cases, may be negligible. 
ru in spc:cial epplicatioos like spatial structures. robot 
ll1DS and manipulators, high speed machine elements, 
etc. where light weight is of great importance, these 
deformations play an important role in the dynamic 
analysis. Imposed weight limits on light structural 
elements result in highly tlexiftte systems. Thus, 
dynamic analysis of tle~ble manipulators, such as 
rotxx arms, which takes inlo account the noo-rigidity of 
the elements is essential. 

Dynamics of flexible bodies is an area of on-going 
resemdi md mmy researchers have coocentrated their 
dbt in the analysis of such systems. The m~ for 
the analysis of flexible multi-body systems are divided 
into three groups: 

(a) simpJi6ed method hued OD elasto-dynamics, 

(b) methods bwd OD defining ddOrmatiom with 
respcc:t to .moving raacuce hmcs. md 

(c) mdhod,, dUll ddinc 1be owrall motion plus 
dcDmlboo widl rapcc:t to Ill inatiaJ hue [ l ]. 

Sunada and Dubowsky [7] Wied the simplified eJuto. 
dynamic method in which the dc!Q11Datioo is uncoupled 

fun rigid-body motioo. This method does not accowit 
fer coopling tams which may influence the results. For 
general purpose applications where coupling terms 
stroogly influence the solution, the dynamic analysis is 
based on the second method. Serena and Bayo [4], 
Soog and Haug [5] applied the 9CCOlld method in which 
rigid-body variables and deformation variables are 
used to expres.5 the deformation with respect to moving 
frames. Moreover, they applied finite element 
di.screti.zation of the flexible body, where defonnation 
variables were considered by nodal variables resulting 
fun the finite element discretization. This method has 
the advantage in that it makes use of known linear finite 
element theory. The third method uses large 
deformation theory which develops nonlinear finite 
elements in the formulation using variab~s that define 
~translation and defonnation of the body at the 
same time. 

In this paper we will discuss the dynamic formulation 
of the problem of flexible manipulators based on the 
method of defining the deformation with respect to a 
moving frame of reference. Following Serna and Bayo, 
FEM descretization of the flexible body is used to 
determine deformation variables from nodal variables. 
The method presented is then demonstrated by 
applying the theory to a pin-pin flexible arm. The FEM 
solution presented herein can easily be extended to 
include various cross-sectional behaviours and 
boundary conditions of the flexible arm. 

KJNEMA TICS OF THE PIN-PIN BEAM-LIKE 
ARM WITH CONSTANT CROSS-SECTION 

Consider the beam-like arm OA fixed at 0 that 
reprmits a flexible body which vibrates under pin-pin 
conditions. The reference system (x,y) is a moving 
reference system that moves along with the arm. The 
reference ~ characterizes the rigid body motion of the 
arm. The dastic deformation of the ann is measured 
relative to the reference q> and the slope of the elastic 
defonnatioo is measured by the angle 6. 
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Figure 1 Flexible arm motion behaviour 

The velocity of a point P on the ann is obtained by 
considering both rigid-body motion and elastic 
deformation of the arm Jn component fonn, VP is given 
by 

(Vp)y = v + q,(x + u) 

(Vp)r = ii - q,v (1) 

4>=q,+e 

where v and u are local displacements of point P; x and 
y define the position of P relative to the x-y frame of 
reference; q> is the rigid-b_ody displacement; e is the 
elastic displacement and, <p and e are the respective 
time derivatives. The elastic defonnations of the ann 
are very small in comparison to the overall dimensions 
of the arm. Hence !' is negligible in comparison to x, 
and neglecting <pv for simplicity, the velocity 
components are obtained to be 

VP = (V;,,)y = v + ~ 
4>=<P+0 

(2) 

KINETIC AND POTENTIAL ENERGY OF 
THE ARM 

Kinetic energy of the flexible ann is obtained from 

(3) 

Substituting for the mass dm and V,., we obtain the 
kinetic energy equation as 
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where 

T = ! ( L (pA(v + cP x)2 + 
2 Jo 
pl( q, + 0)2) dx 

I is the area moment of inertia, and 
dm = pAdx 
A is the cross-sectional area. 

Simplifying the right hand side yields 

(4) 

(5) 

The tenns 2 p/cpodx and o pldx are coupling ~
L 'A ~LA2 

and rotary ertia tenns, r ~tively, which are 
neglected in Bernouli-Euler beam theory. Moreover, 
the term q,2 J; Lp/dx is negligible in comparison to the 
first term oW the right hand side of Eq. (5). Thus, 
assuming :Bernouli-Euler beam theory, the kinetic 
energy of the system simplifies to 

(6) 

Consider the four-element finite element model of the 
arm shown m Fig. 2. It is worth noting here that for the 
pin-pin model the vertical displacement at the fixed end 
0 and the tip A are zero. For a C' beam, introducing 
Hermite interpolation functions H(x) given in Eq. (8) 
(3) and the element discrete nodal displacements 
shown in Fig. 3, the beam displacement v(x) is 
obtained from 

v(x) = H(x)v (7) 

where 

and 
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· {%r {%r Hi = x - ~ L, + L r, 

H2 = • _ 3( ~ r + , ~ r 
L, . L, 

· { %r { %r: H, = -L L. , + L L, 

n. = 3( :.} - 2{ :.} 

Frcm Eq. (7) we obtain 

\i(.r) = H(.r) i 
{\i(.r))2 = ir[H(x)fH(.r)~ 

Substituting into Eq. (6). the kinetic energy is 
to be 

1 . 2 
T = - [/oq> + 

2 
iT <foL(H(x}f pA(H(.r))dx)i + 

2i,2<foLpAxfH(.r))dx)~) 

Or, 

1 · 2 1-:r -: T = -I cp + -v ~ v + 'f'lvl. P 2 0 2 c 

where the finite element mass M1 is given by 

M1 = foL•pA[H(x}f[H(x)Jdx 

IDd the finite element coupling mass is 

Mc = fo L•pAx[H(x)Jdx 

(8) 

1tained 

(9) 

L. 

Figure 3 Element nodal displacements 

For the beam element shown in Fig. 2, the 
displacement x is obtained from x = H(x°'); where 
1 = ~1 1 .r2 l l is the vector of discrete element 
displacements at ihe nodes for the rigid body motion. 
Substituting for x in the element coupling mass, it can 
be demonstrated that the element coupling mass M/> 
is 

The potential energy of the arm, V, neglecting the 
deformation in the u-direction, is given by 

- (J 1) 

wbece v(,x)'' is the derivative of v(X) with respect to x. 
Substituting for v(,x)11 and simplifying, we obtain 

1-r -
V = 2v K1 v (12) 

where K1 , the element stiffuess matrix, is given by 

EQUATION OF MOTION 

Equation of motion of the system is obtained from 
energy ~ons by applying Lagrange equations. 

!!J oT) _ ar + av = Q 
di\ oq oq oq (l4) 
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From the kinetic and potential energies, Eqs. (9) and 
(12), we obtain: 

Substituting into Eq. (14), the equation of motion in 
matrix form is written as 

~. ~][;] + ~ ~[:] "[Q] (15) 

where 

Or 

M1 is nxn mass matrix as obtained from the 
finite element model; 
10 is the mass moment of inertia of the ann 
aboutO; 
K1 is nxn stiffness matrix; 
Q is (n+ 1) x 1 load vector, 
v is the vecta' cL nodal point displacements; and 
cp is the rigid body rotation of the ann. 

Mf+Kq:Q (16) 

where 
Mis (n+ 1) x (n+ 1) mass matrix, and 
K is (n+ 1) x (n+ 1) stiffuess matrix. 

NUMERICAL EXAMPLE 

Consider the flexible ann OA shown in Fig. 4(a) 
subjected to the torque T applied at pin 0 for the first 
O.Ss with the magnitude shown in Fig. 4(b). The 
dynamic behaviour and time history response of the 
arm are analyzed for.ls. 

Arm characteristics are: 
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E : 2·1011~ p : 8000 kg 
m2' ml 

ri I 
~ 
,.. __________________ _.A 

T (a) 

[N-m] 

I 

.25 0.50 t [s] 
-1 - - -

(b) 

Figure 4 A flexible pin-pin arm subjected to 
a torque 

The flexible arm OA is modelled by a four-element 
FEM model shown in Fig. 2. For each element of the 
modelling, the element mass matrix is obtained by 
numerical iittegration using Gauss quadrature with four 
sampling points from the equation 

The element coupling mass vector A{'> is calculated 
from 

Using fOW' sampling points for calculating the element 
mass improves accuracy. 

For element 1, 

rr : [o l 0.375 I] 

Hence, AJ!•> for element 1 is obtained to be 

u;1>: [o l o.375 l] ~rJ 
: ro.0169 0.0014 0.0349 -o.00211r 
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Canying out this operation f<X" the remaining three 
elements and assembling. we obtain the global 
coupling mass matriXMc to be 

~ = (0.0014 0.112S 0.0028 Q.22SO 

0.0028 0.337S 0.0028 -0.0126]1 

The elc:meot stiffness matrix is obtained again by 
mm:rical ~using om quadrature 'with two 
sampling points from the equation 

K1 = fo L•[H1(x)fE/IH1(x)]dr 

The global mass and stiffiless matrices are obtained by 
assembling the element matrices. Thus the equation of 
motion in a discretiud form can now be written as 

Mf+Kf=Q (17) 

where M and K are the global mass and stiffness 
matrices; Q is the forcing vector; and q is the vector of 
the nodal displacements and rigid body rotation. The 
stiffness matrix K has zero entries in the first row and 
first column. Thus to be able to determine the oatw:al 
frequencies of the system. the first element of K is 
given a very small magnitude to eliminate singularity 
cooditioos. 

Eq. (17) is solved by using Newmark algorithm (2) 
with the initial conditions given by 
f(O) = q(O) = f(O) = 0. 

RESULTS 

1. Linear displacement of the tip A is"M>tained from 
rigid-body motion and elastic deformation of the 
arm, and is given by 

v, = Lq>, . 

Flexibility of the arm is included in the 
determination of .,1• 

2. Angular displacement of the arm is composed of 
rigid body motion and the elastic deformation 
and is given by 

'P, = "' + e. 
Ripl-body motioo characteristics of the arm are 
shown in Fig. 5. Plot of the linear displacement 
of the tip of the flexible arm is shown in Fig. 6. 
Figure 7 represents the hub rotation of the 

· tlexible model. 

• 

t 

t 

t 

Figure 5 Motion characteristics of the 
rigid model 
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Figure 6 Total displacement of the tip of the arm 
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Figure 7 Total hub rotatiori 
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CONCLUSION 

1be vibratory responses of the flexible arm, shown in 
Figures 6 and 7, include both rigid-body motion and 
elastic deformations. These responses indicate that the 
arm undergoes free-vibration about the deflected 
position which results from the flexibility of the arm. 
This result is expected from physical considerations of 
the ann. For the first few hundredths of a second, due 
to the inertia of the arm, the linear displacement tends 
to be negative with a very small magnitude which then 
increases to vibrate about the equilibrium position. 

In robotic applications, this analysis fonns the basis 
toward vibration control of the tip and any other point 
of interest on the arm, where unwanted vibrations may 
introduce errors in the determination of the exact 
positions of points of interest. 

Further, the approach presented herein can be used for 
the analysis of flexible arms with variable cross­
sections and various boundary conditions. 
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