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ABSTRACT

Approximate structural reanalysis methods have
long been pursued in quest for efficiency so as to
enhance their practical' application in the
assessment and verification of designs following
design modifications, These have been of significant
practical importance with particular emphasis on
design optimization of large-scale structural systems
in which thousands of design modifications need to
be carried out during the search operation to
identifY optimal sy5tems, However, the consequential
problems of accuracy and ~eliability call for the
development of better-quality mathematical models
that enhance computational quality while keeping
the computational effort at afraction of what might
be required if complete and exact analysis would be
carried out. This paper presents an efficient
structural reanalysis mathematical model that is
based on the flexibility method and exhibits high
approximation qualities in evaluating structural
responses of a newly proposed design from those of
an initial trial design,

The mathematical model to be presented here is a
flexibility-method based binomial-series
approximation' of structural responses for a
general anc!' unconditional change. in design,
coordinates. It makes use of one set of results from
a single exact analysis usually carried out for the
initial trial design. Novel concepts of scaling arJd
norm minimization have been introduced to gain
accuracy, efficiency, and reliability. The proposea
model has been compared with existing ones and
also with exact analysis outputs and it has shown
excellent approximating qualities even under
significantly large design modifications.

A numerical example has been presented to show
potential capabilities of the proposed model.

INTRODUCTION

Structural response quantities, such as generalized
forces, displacements and vibration properties, are'
necessary iP the process of assessing the adeqllilCY
of a proposed' design with· resp~ct to some
established criteria. There are a number of

conditions tnat call for reanalysis of a structural
system in such a process. Among these. are
included changes in structural properties such as·
the cross-sectional, geometrical, topological and
material parameters. In this respect, therefore, rapid
reanalysis of structures following changes in design

. coordinates is a problem of considerable practical
importance.

Structural response quantit.ies are usually implicit
functions of the various structural' properti'es
mentioned above. In all changes that affect these
and similar parameters, there is a need to carry out
complete reanalysis to establish the magnitude and
nature of structural responses under the new
condition. When such changes take place
repeatedly, such as, for example, in an itera~e
swctural design optimization pI:ocess or when the
changes are significantly large as compared to the
initially known design coordinate, the reanalysis
operation calls for extensive computational effort,
sometimes for thousands of such repeated
operations,

An exact analysis procedure that ~ repeated several
times to produce stich quantities becomes
prohibitive from view poi;1t of computational cost,

,its inefficiency and numerical instability. Apart
from this, many 'available analysis the<?ries and
procedures are not tailored towards making use' of
already available structural response' quantities to'
predict corresponding response parameters· at
different design coordinates. This. calls ,for
complete response determination leaving behind

. previous response values' that otherwise coiiJa be
eJ:fectivelyused in pr;dicting and determining new
response quantities that correspond to new design
coordinates. In this regard, therefore, efficient
method for reanalysis of structures that makes use
of already available response data is a desirable
phenomenon of significant practical importance.
'The need to use approximate reanalysis methods is
. further justified in the classical trial-and-c:hange
design 'Operations as it is often unnecessary to

,analyze intermediate designs accurateW In order to
alleviate these shortcomings of carrying out
complete exact reanalysis of the design at every
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In statically indeterminate structures, the number of
unknown internal forces T are larger than the
number of 'available equilibrium equations.
Consequently, the set of equations Eq: (1) is not
sufficient for an explicit determination of T. The
deficiency in solving for the internal force
distribution is supplied for by a second set of
equations Ifrom consideration" of displacement
compatibility. The compatibility equation system is:

. In the finite element force method of structural
analysis, a structure is discretized into a number of
finite elements c:>nnected at nodal points and nodal
forces are taken as the unknowns. This method of
analysis [5] is based on the overall enforcement of
equilibrium conditions in the structural system and
the subsequent satisfaction of displacement
compatibility. The equations of equilibrium relate
externally applied forces P to internal reaction
forces T through the equilibrium matrix E, and for
the entire structure, these 'equations are assembled
to a form (see Annex):

in which F is the flexibility matrix, N is the vector
of redundant forces, and D the displacement
compatibility vector corresponding to the
generalized redundant forces.

Once the unknown quantities N are determined, it
is a straightforward matter to find all other 'member
forces from Which stresses, displacements and
other behavioral quantities of interest can be
computed.

The approximate' reanalysis methods to be
presented here employ one set of exact analysis
results in predicting similar quantities at new
design points, To facilitate certain computational
aspects of the resulting expressions, use is' made of
intervening variables in the form of cross sectional

. properties X (specifically, reciprocal values of
these variables) in place of the corresponding
original properties, As these variables usually
represent cross-sectional areas or inertia moments,
elements of both the flexibility matrix and the
displacement compatibility vector in the
cOIllpatibility equations, Eq. (2), become linear
functions of these inverse variables. Hence,
formulations in terms of reciprocal variables, Y.
that is,

~e of ·the change, several methods have been
proposed for approximate reanalysis of structures
( see, for e~ple [1,2]).

The primary objective of any approximate
. structural reanalysis, model is to alleviate the need

to carry out con1Plete analysis of the StruCtur6
while generatiri~ "estimates of critical and
potentially critical response quantities at the new
designcoordiI1l:\te at a required level of accuracy
and efficiency, and to cOIl)Pllte the design
sensitj.vity infohnation [3,4]. These methods make
use of as much information as possible that is
geI1.erated at the prec,eding design coordinates,
Accordingly, for any strtlCtural reanalysis technique
to be w~y of consideration, its computational cost
has to be less than that required by a fresh exact
analysis and the procedure must possess features that
help its integration into the repetitive design

.operation. In view of these underlying factors, tlle
need to develop efficient and reliable approximate
reariatysis algorithms with high level of accuracy
becomes obvious.1'O this effect, therefore, this pai>e
presents an. efficient,' reliable and high quality
approximate reanalysis model with special emphasis
on the force method of analysis..

In most cases, reliability and computational
efficiency have been secured together with
improved level of accuracy by lImiting the amount
of design chailges in search algorithms. This
approach, however, entails more computational
effort both in the synthesis and the analysis phases
as reanalysis is to be carried out at significantly
'large number of design coordinates in the design
space. A more efficient procedure would then be
to deyise some means of enlarging the· quality
zones of the approximation models so that a search
in a particular iteration stage can be'effected in~as
few steps as possible. Such. a prpcedure.wJ1r
reduce the total computational effort'while it keeps
the level of accuracy as high as possible.

In recent years, interest in the force method of
analysis as a· means of d~sign-oriented reanalysis
tool is growing. Among the promising features of
force method of analysis for tl}is purpose are
comparatively lower degree of static indeterminacy
compaIed to displacement degrees of freedom;
relatively low sensitivity of forces to changes in
design coordinates as compared to those of

. displacements; comparatively less influence of
approximation errors on forces than on
displacements; and, finally, option of selecting the
analysis unknowns in the force method.
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(3) ( -)-1 - -2 -3I+C = I-C+C -C +... (7)

Equation (7) provides the binomial series
approximation model for N:

The validity of a binomial series approximationmodel
depends on the convergence properties of the matrix

C. The accuracy of this model improves when
more terms of the series are employed.
Convergence of the series is guaranteed if the
Euclidean norm of en tends to vanish as n

increases; that is,

will give expressions that can easily be processed"
in the compatibility matrices.

In all subsequent formulations, availability of the
decomposed initial flexibility matrix Fo into an
upper and lower triangular matrices, U and UT,

respectively, is assumed such that:

Fo=UTU (4)

The triangularization of the flexibility matrix Fo in
the form of Eq. (4) facilitates the determination of
the forces N in Eq. (2 ) by forward and back
substitutions rather than through inversion.

( ~ -2 -3 )-N= I-C+C -C +... N (8)

In the trial-and-change structural design approach,
design changes can be introduced in various ways.
These include general change in each design
variable such as changes III cross-sectional
parameters or property, material property, changes
in geometry and topology of the system. Changes
may also be introducetl in a controlled manner such
as those introduced along an arbitrary line in a
design space or those along a design scaling line. In
this study, reanalysis models are developed for the
first type of change. The other forms will be
presented in subsequent"studies.

(9)

The quality of approximations by the binomial
series models is sensitive to changes in the
flexibility matrix. This reanalysis model exhibit
poor performance if large design modifications are
introduced. In view of this, any improvement on
these models has its root in manipulating the
flexibility matrix ana, hence, the scaling operation
is performed on the initial flexibility matrix.

Improved Binomial Series Approximation
Model

APPROXIMA TE REANALYSIS MODELS
FOR GENERAL DESIGN CHANGES

where N is the behavior response to be
approximated. Pre-multiplying both sides of

Eq. (5) by Fal, and using
- 1 - - 1 -
C=Fo ~F, No =Fo ~D and N=No+No for
brevity, solving for N:

Binomial Series Approximation Model

This reanalysis model is obtained wh.en an
approximate solution to the compatibility equations
is expressed in a binomial series expansion [6].
For a general design change ~ Y , the compatibility
equation Eq. (2J may be written as:

(10)Fo.s =fFo

in which Fo,s is the scaled flexibility matrix and f
is a positive scaling factor for the initial flexibility
matrix Fo. This scaling operation in general need
not produce a scaled. flexibility matrix that
corresponds to any specific design. For a general
change in design, the matrix F at the ,new design
coordinate can then be expressed as:

The scalar multiplierf is chosen such that the quality
of response approximations by the binomial series
model ofEq. (8) is improved.

F = Fo+LiF = f Fo+LiFf

In order to improve the response-prediction quality
of the binomial series model of Eq. (8), a linear
scaling of the initial flexibility matrix is suggested
as follows:

(6)

Expanding (I + <:)-1 in binomial series under the'·
assumption that C is a convergent matrix [7]):

To implove.the quality of approximations by the
binomial series model of Eq. (8), the proposed
scaling procedure is employed. The compatibility

fI
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equation, Eq. (2), as a function of the scaled

flexibility matrix can b~ posed as:

( f Fo + 6Ff ) N = Do + 6D (12)

z '1/1'

[L L e ~f O'l +.~ C.v)] ~ min

(17)

Substituting for ."iFf from Eq. (11) into Eq. (12)
and employing the notations used along with
Eq. ~5) with some rearrangement gives:

( 1- f 1 -J -I+--I+-C fN=N
f f .

(13)

where 8" is the Kronecker's delta ..

Differentiating Eq. (17) with respect to f, noting
that f * 0 and assuming

'" '" (.!.:L 0 H +ic. J 2 '" 0 , finally setting the£.... £... f IJ f IJ

resulting expression t6 zero:

Define, for brevity,

I-I 1 
Cf =-I+-Cf f (14)

Solving for f from Eq. (18),

(18)

(20)

(19a)f _ l: l: (5, + C, 'I
- l: l:" 5, (5, + C j )

or

f _ l: l: (5, + C, 'I (19b)- l: l: 0+ Co )

The criterion of Eqs. (19) provides a model with
large q'oality zone from which the most efficient

scaling factor can be extracted. Determination of

the redundant forces follows by employing
Eq. (15).

As it will be demonstrated subsequently by
numerical examples, the proposed reanalysis model
almost always improves convergence' properties,
including numerical stability, and usually only the
first few terms of the series are sufficient to obtain

high quality approximat.ions of the forces. In most
cases, even for relatively large changes in .the
design coordinate, the first two tenns of the model
often provide high level of accuracy so that:

Now ~(I-Cr)Nf

The. determination of the scaling 'factors f as a means .

of improving convergence opthe matrix C has been
based on the Euclidean nOlll1of the latter. The choice

of the Euclidean norm for this purpose is b8sed on the
ease and efficiency of its determination. Euclidean

Jiorrns constitute upper bounds to the spectral radius·
[8]; that is:

(15)

A simple criterion based on norm-minimization of

the matrix C is now proposed to find an effective
and efficient scaling factor f. If the binomial series
expansion of Eq. (15) is valid, the resulting
approximation is greatly influenced by the first few
terms. If the effect of these dominant terms of the

series is minimized, that of the rest of the terms in
the series vanishes progressively. The criteria to be
proposed take this fact into consideration and
norm-minimization is carried out on the most

influential tet:m of the series of Eq. (IS) which is
the second term of the series.

The criterion to be proposed for the selection of an

effective' scaling factor f is that of minimizing. the
Euclidean norm of the matrix Cr; that is,

It is now required to determine an effective and
efficient scaling factor f that will improve the

convergence properties of Eq. (15) over those of
Eq. (8).

Making use of this last expression ofEq. (14) in Eq.

.(13); and expanding. (I+Crtl under certain

conditions to be presented subsequently, the
following improved binomial series approximation
model for the redundant forces N is obtained:

~ min (16) •••• IIcr x II
p (c r ~= x. 0 "y " "" C r X II,

(21)

Substituting for Cf from Eq.(14) into Eq. (1.6), one
obtains:
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-where ICf X IF is the Euclidean norm of Ce and the
proposed norm-minimization· approach minimizes
this upper bound. It will be shown that the scaling
multiplier f selected by the criterion of Eqs. (19)
and umler a variety of changes in design
coordinates almost invariably improves
convergence properties and is capable of a

converting no~onvergent matrix C to a
corresponding convergent Ce.,

NUMERICAL EXAMPLE.S
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F;ig. 1.1 Eight-membeP test model.

Example No.1: The potential capabilities of the
proposed reanalysis model is tested on flexm:al
'system using the rigid plane frame structure with
six degrees. of static indeterminacy, Fig. 1.1. The
structural layout, designation of redundant forces
and the set of external actions are given in Tables
.1.1,. 1.2, and 1.3 respectively. Test data for all the
three case are given in Table 1.4.

Table 1.1: Member designation and orientation

Member Orientation

1

1-3

-

2
3-6

3

6-7

4

7-8

5

3-4

6

4-5

7

2-5

8

5-8

2

Table 1.2: Redundant designation.

Designation Moment

1

M13

2

M25

3

M45 (M43)

4

M36

5

M58

6

M78( M76)

g!
-I

iI
i
!
i
I

•• ~n •

i

Table 1.3: Load components

Node
Loading components

Member
Loading components

x

y xY

3

45.0 •0.030.0-6.0

6

45.0 0.040.0-6:0

5

0.0-6.0

-6

0.0-6.0
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Table 1.4: Design coordinates for initial and modified designs!.

Member
Design coordinates for reanalysis

Designation

Initial design Xo Case 1

X

% (OX)

I
1.00.51013-48.99

2

1.00.14084-85.92
J

1.00.12523-87.48
4

1.00.12523-87.48
5

1.00.40605-59.40

6

1.00.40605 .-59.40
7

1.00.14048-85.95

8
1.00.51053-48.95

%(OX) range

-87.48 - -48.98

. Cross sectional properties X represent moment of inertia.

Figure 2.1 Twenty-five-bar transmission tower'test model.

Consistent set of units have been assumed for the

nWlleric.11example.

EXQmple No.2: The twenty-five-bar tower with
seven degrees of static indetermimwy, Fig. 2.1, is
presented as a structural problem upon which the
potential capabilities of the proposed reanalysis
mooel is tested.

The proposed reanalysis model is tested on two sets
of new design coordinates that vary in magnitude
and in the nature of changes of the design.
coordinates. These include a design that changes
about 9000% from the base analysis point with
perturbation of ±1000% of the initial design
coordinate (Case 1) and another design in whi,ch
different degree of random changes have been
introduced (Case 2). The structural layout
designation of redundant forces are given in Tables 1
and 2, respectively. Test data for all the three case
are given in Table 3.

Consistent set of units have been assumed for the

numerical example.

-_":.,~:.

'>-':--. ---- ...-:-?~-
....• "-- .•..

.><--.?~--"~:.

Table 2.1: Member designation and orientation.

Member OrientationMemberOrientationMemberOrientation'MemberOrientationMemlJerOrientation

1

1-26·2-4114-5164-9216-9

2

1-472-5123-4175-8226-10

3

2-381-3135-6184-7233-7

4

1-59'1-6143-.10193-8244-8

5

2-6103-6156-7205-10255-9
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Table 2.2: Redundant force designation.

Designation Force'DesignationMember

1

FI5F23

2

FI26F24

3

F137F25

-4

Fn

4

Fn

Table 2;3:. Nodal load components.

Node
Loading' components

·x

yz

1

100.01000.0-500.0

2

0.01000.0-500.0

3

'50.0 .0.00.0

4

50.00.00.0

Table 2.4: Design coordinates forinitial and modified designst .

Member Initial design
Design coordinates for reanalysis

Case 1
Case 2

Designation
XoX% (LlX)X% (tlX)

1

10.0101.0910.03.0-70.0

2

10.0105.0950.016.060.0

3

10.0110.01000.04.0-60.0

A

10.092.0820.022.0120.0

5

10.093.0830.020.0100.0

6

10.090.0800.016.060.0

7

10.0109.0990.03.0-70.0

8

10.098.0880.019.090.0

9

10.0105.0950.09.0-10.0

10
10.0106.0960.018.080.0

11

10.098.0880.020.0100.0

12

10.0' 96.0860.0.16.060.0

13

10.0105.0950.012.020.0

14

10.0107.0970.04.0-60.0•15 10.092.0820.06.0-40.0

16
10.091.0810.02.0-80.0

17
10.0104.0940.015.050.0

18

10.098.0880.012.020.0
.'19

ro.O98.0880.017.0. 70.0

20

10.0106.09!i0.023.0BO.O

21
10.0103.0930.08.0-20.0

22

10.097.0870.015.050.0

23

10.0102.0920.05.0-50.0

24

10.094.0840.020.0100.0

25
10.095.0850.04.0-60.0

%(DX) range

800.0 - 1000.0-80.0 - +130.0

Cross sectional properties X represent area.

TEST RESULTS

The responses of the structure to the set of external
actiorishave been det~ned using both the:series of
Eq. (8) and its improved version given in Eq. (15).ln
both cases, tabulated values are those obtained using

only ,Utefirst few terms of the series as noted in the
cQrreswnding tables. Exact analyses have also been
carried;· out using STAAD.Pro 2004 [8] for the
purpose 'of comparison.
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Similarly, test·results for both case of the twenty-five
bar tower of ~xample No.2 are:·given in Tables 4
while convergence history of of the reanalysismodels
is given in Figs. 4. Table 4a prOvidesresults for test
Case No.1. while Table;4b is for test Case No.2. In.
the same manner, Table4a provides convergence
history of both models given by Eq. (8) and Eq. (15)
for test Case No. I. On the other hand, since the
model given by Eq. (8) is not a converging for test
Case No.2, ooly the convergence history. of the
improved reanalysis model given by Eq:(15)' is
s!¥jwnin Fig. 4b.

Test results' for the eight-member plane frame of
Example No. I are given in Table 3.

. Convergerice.of the reanalysis models is given in
Fig. 3. Since the model given by Eq. (8) is. not a
cmverging one; onJy the convergence history of the
imJxuved reanalySis model given by Eq. (15) .is
gi~ .

Figure 3 Convergencehistory - Eight-membertest model

Table 3: Reanalysis restilts for plane frame of Example No.1.

Reanalysis results
Redundant M

Initial analysis-MoModel ofEq. 8MOdel of Eq. 15 TExact M
M

I % deviation. M% deviation( STMD.J>ro 2004)

1

5028.02 515.692-0.1516.14
2

5112.63 11314.740-0.01'1315.32
3

175.87 17928.886-0.017928.93
4

1'386.08Does not converge.
11306.853

0.011306.86
5

1732.19 1.5578.7i1-0.015578.72
6

211.10 21201.2370.021201.24

t Twenty-termapproximation.

Table 4a: Reanalysis results for twenty-five bar tower of Example No.2, Case 1.

Redundant Initial analysis
Reanalysis results for Case I

N

No .Model of Eq. 8iMOdelofEQ. 15+Exact N
N

% deviation·N% deViation( STMJ).Pro 2004 )

1

72.06. 32.575-74.3126.6520.0126.61
2

166.1169.471-64.0. 193.2030.0193.22
3

-135.11. -91.58837.3-146.0050.0-146.02
4

998.44462,976-54.1.1008.4600.01008.45
5

-1239.86-585.68153.6-1261.8740.0-1261.86
6

-1402.21-664.41651.9-1382.0170.0-1382.00
7

880.97389.694·38.4830.7660.0830.75

Six-termawroximation.
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Table 4b: Reanalysis results for twenty-five bar tower of Example No.2, Case .2.

Reanalysis results for Case 2
Redundant

. Initial analysisModel ofEq. 8Model ofEq. 151Exact N
N

No

I % deviation

( STAAD.Pro 2
N

% deviation
004 )I

72.06 293.4310.0290.40
2

166.11 . 382.6060.0317.84
3

-135.11 -415.9020.0-474.37
4

998.44Does not converge.907.8690.0828.68

5
-1239.86 -8.94.0210.0-892.53

6
-1402.21 -1522.9010.0-1660.16

7
880.97 600.7430.0619 82

1 Six-ternlapproximation.

Convergence of the reanalysis models ,is given in
Figs. 4. Both model of Eq. (8) and Eq. (15) are
convergent.for test Case No.1. However, the model
given by Eq. (8) is not a converging for Case 2;
accordingly, only the- convergence history of the

improvedreanalysis model given by Eq. (15) is given
for this latter case. In order to give more insight into

. the convergence properties of the models, several
terms of the series have been included in the
convergencehistory.

12 12

10

0.8

+
+.. +... + ";-. +" ... +...•. N.

+

·tt·· ...+.t ..tt N,

..
1.0

08
--+ ··t N,

0.6
.t 0.6

0.4 04

-0.6

-08

-+ u.+--.-. +
+- ....•. +- .

....+--~.. ··t-· -t·.- .--- -~+

0.8

·0.6

·0.:4

0.2

.~
x Ot}~
.§

.0.7

02

·04

; 0.0 ~ .. r~·:·:·~ : ..:.~~:.:-: ~
$. -02 f\ t ..··..+ .+ ... ·t--· t ...+ ... +-m -;... - t N,

-10 ·1.0

-17 ~ _ + + + __+-n_. __of N,-12

.1.4

+ ''+-- ----+- '+ + -+ + .. u",+ N•.

'+- + + .•. -+ ·to'·iN. .1.4
·of -t· '" t --..·-t ·t No

·1.5

o 20

Model of Eq. (8)
t I •

40 60 '80 100
number of !erms
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Figure.4a Convergence his~ory-.TweJ;lty-fiVe~bartowt<r,Case 1.
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In general, the improved model exhibits highly
improved quality .in respbnse' approximation when
large changes are introduced. The test problems
have indicated that the reanalysis model of Eq. (15)
is always exceedingly better thart its predecessor,
Eq. '(8). High quality approximations have been
obtained by using onJy the first few terms of the
infinite series. -
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In very few cases, these models have exhibited"
slow rate of convergence; however, once
convergence is guaranteed, further efficiency can
be introduced by employing d)uamic acceleration
techniques whereby the asymptotic limit of the
reswnse quantities N can be predicted based on a
few terms of the series . This can be carried out
either for individual Nj by Aitken's [9] acceleration
or by introducing a common acceleration parameter
for all response. quantities N by the modified
Aitken's method [10].
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DISCUSSION AND CONCLUSION

Figure 4b Convergencehistory - Twenty-five
bar tower, Case 2.

Approximate reanalysis results as well as
corresponding exact response values for both cases
of the twenty-five-bar transmission tower are given
in Tables 4. The efficiency, level of accuracy, and
reliability of the improved model under large
design changes are indicated by the results of
Case 1 in Table 4a. The latter are given for both
reanalysis models given by Eqs. (8) and (15). Only
the first two terms were sufficient by the improved
model to reach the level of accuracy attained by
l\,bout fifty-term approximation of the original
version.
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The implication of these high-quality reanalysis
models is off-hand clear. The size of changes in
design coordinates in any design modification is in
part controlled by experience of the designer. '!be
size of ~he modifications to be introduced by the
designer is often influenced by the capability of the
reanalysis model to be used. In view of this, the
proposed' models are capable of guiding the design
modification process even at designs far from the
base point.

It is believed that this work has accomplished two
major objectives - improving an existing reanalysis
model and, further, shedding light on the directions
to be taken for future research work on ways for
improving other reanalysis models.
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The other case is meant to study the properties of
the reanalysis models under random design
changes. It can be seen that the influence of the
nature of design changes on the performance and
prediction quality of reanalysis models is no less
than that of the magnitude of the changes. A few
more terms of the improved model produce exact
results.
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ANNEX

Review of the Generalized Force Method of

Structural Analysis

In the finite element force method of structural
analysis, a struct~e is discretized into a number ()f
finite elements connected at nodal points and nodal
forces are taken·as the unknowns. This method of

analysis [5] is based on an Qverall enforcement of
equilibrium conditions in the structural system and
a subsequent &atisfactionof compatibility.

The . equations of equilibriwh relate externally
applied loads P to int~ reaction forces T, and ,
for the entire structufe these equations can be
assembled to a form:

The internal force distribution matrices Tp, Tn
independently satisfY equilibrium; however, they
individually violate compatibility. The matrix Tn
can be interpreted as self-equilibrating forces
system whose magnitudes N need to be
determined.

Both Tp and Tn show specific patterns. The former

contains a generally non:zero submatrix Tp

associated with the determinate base structure and a
zero submatrix with as many rows as there are
iadeterminacies. This can be expressed as:

(A4)

where E the equilibrium matrix.

The.equilibrium matrix E is a function of structural
geometry and it is independent of the elements'
sizes. In stati~ly indeterminate structures, the
number of unknown internal forces T is laiger than
the number of available equilibrium equations:.
Consequently, the set of equations Eq (AI) is not;
sufficient for an explicit determination of T...

,

The deficiency in solving for the internal force
distribution is supplied for by. a second set of
equations - from' consideration of (displacement

~mpatibility. The compatibility equation systerp.
IS:

The internal force distribution of Eq. (A3) in a
redundant structural system can then be expressed
in terms ofEqs (A4) and (AS) as:

On the other hand, the Tn matrix incOlporates an
identity matrix corresponding to the I cut I redundant
members, besides a generally nonzero submatrix

Tn related to the base structure. This can be

expressed ap:

(A6)

(AS)

(AI)

(A2)

ET=P

FN=D

in which Tp

represents the internal force distribution due.to unit
external forces on the base structure, and Tn is the
inteIl).al force distribution due to unit redundant
forces applied across fictitious cuts.

where F is the flexibility matrix, N is the vector of
redundant forces, and D is .the displacement
compatibility. vector corresponding tn the'
redundant forces.

In a statically indeterminate structure, the internal
force system T can be expressed as a sum of two
component distributions: the first due to externally
applied loads on the base structure, and the second
due to the redundancies assumed to be acting along

fictitious cuts. TIlls carl ~ expressed as:

where f is diagonal matrix of element flexibilities.

(A8)

(A.?)

The set of system equilibrium equations (A 1) with
a modificiition that th~ internal redundants are now
being considered as eXternally applied loads attains
the form:

with the partitioning exactly as in Eq. (A6~.
Satisfaction of 'compatibility conditions demands
that the magnitude of the redundant forces N be
selected ts>ensure zero relative displacements at the
fictitious cuts. The cs>mpatibilitycondition of zero
r~lative disp!acements would be:

(A3)T=TpP+TnP
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Comparing this latest exprcssion with Eq (A2), it
can be seen that:

This is in fact equivalent to Eq (A2). Substituting
for T from Eq. (A3) into Eq. (A8), the latter
becomes:

Solving for the redundant unknowns in Eq (A9):

and D=-1'lf1' Pn p

(A9)

(A lOa)

(AlOb)

[4]. Abu Kassim, AM. and -Topping, B.R V.,
1985, Static reanalysis of structures, A
Review, Proceedings of the Second
International Conference on Civil and
Structural Engineering Computing, London,
pp 137-148.

[5] Przemieniecki, 1.S., 1968, Theory of Matrix
Structural Analysis, McGraw-HilI.

[6] Kirsch, u., 1981, Approximate structural
reanalysis based on series expansion,
Computer methodj>in applied mechanics and
Engineering, Vol 18, pp 205-223.

(All)

Equation (All) is the common expression for
computing the redundant forces.

It is noteworthy in passing that the choice of a
determinate base structure. is a crucial point,
especially when manual selection is made. Care
should be _exercised as inappropriate choices may
create singularities and large numerical errors in
solving the equations. Several proposals to this
effect are now available for automatic selection of
redundancies such as elimination or ''"matrix
decomposition methods [II, 12], or methods based
upon solving a sub-probil;m by mathematical
progranlming [13]. .Once the redundant forces are
determined, any other element force of interest can
be evaluated easily by the equilibrium equations.
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