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ABSTRACT 

A penalty fonnulation for the 11onli11ear analysis of a 
double pendulum is presented which eliminates the 
use of Lagrange multipliers method. A numerical 
algorithm that employs the implicit Ru11ge-Kutta of 
order 2 along with Newto11-Raphso11 method is 
developed to analyze the no11li11ear dynamics of the 
system and to study the chaotic behaviour which the 
system portrays. A computer simulation of a 
numerical example is given to indica

0

te the 
effectiveness of the penalty formulation and the 
algorithm developed. 

INTRODUCTION 

The simple pendulum, which consists of a point mass 
m attached to a massless rod of length /, has been 
extensively studied to analyze nonlinear dynamic 
behaviour of unJamped-frec, damped-free, 
undamped-forced and damped-forced systems (8]. 
The mathematical model of such systems are 
nonlinear differential equations. The solution of the 
equations which describe these systems can be 
obtained analytically in terms of elliptic integrals for 
the simpler cases. In general, the equations are 
integrated numerically to obtain solutions. Numerical 
results obtained by J.M. Thompson and H.B. Stewart 
for the simple pendulum arc n!1)orted in (8). 

The other system investigated for nonlinear dynamic 
behaviour is the planar double pendulum. It consists 
of two point masses m 1 and 111 1 attached to massless 
rods of lengths 11 and J moving in a constant 
gravitational field. This system is used to demonstrate 
the dynamics of nonlinear systems in mechanics. H.J. 
Korsch and H.-J. Jodi [6] have studied the double 
pendulum in which they used independent coordinates 
'P and I/Ito describe the configuration and motion of 
the system. In introducing these variables, they have 
used one of the classical approaches of writing the 
equations of motion. In this approach the equations of 
motion are derived by using a minimal set of variables 

which are equal to the number of degrees of freedom 
of the system. Ensuing second order differential 
equations of motion of the system have been solved 
numerically by using three different numerical 
methods: Euler method, Leapfrog method, and Runge­
Kutta method. Their results include trajectories shown 
in coordinate space, phase space trajectories for the 
inner and outer pendulum, plOL'> of potential energy 
and a two-dimensional Poincarc Map 

In this paper, nonlinear dyna,.,...ic analysis of the 
double pendulum is discussed in which the 
configuration and motion of the ~)'stem is described by 
natural coordinates which are fully Cartesian. The 
equations of motion are derived by using Lagrange 
equations along with constraint equations. As such, 
the equations of motion obtained are Differential 
Algebraic Equations (DAE's). These DAE's are then 
changed to Ordinary Differential Equations (ODE's) 
by using the Penalty Method which has been 
described by Bayo er al (4) Numerical solutions to 
the problem are obtained by using the Mid-Point Rule 
along with Newton-Raphson method. A numerical 
algorithm is developed which is then applied to an 
example. Results obtained are given in various plots 
and a discussion of the results is also included. 

PROBLEM FORMULATION 

A double pendulum consisting of two point masses m 1 

and m 1 attached to massless l'ods of length 4 and ~ , 
shown in Fig. I, is considered for nonlinear dynamic 
analysis. Cartesian coordinates (x,y) are introduced as 
shown in the Fig. I to describe the configuration of the 
system, i.e. the set of dependent natural coordinates 
(x1,y1) and (x-z,y2) define the system. Therefore, the 
vector of position coordinates q which defines the 
configuration is 

q = [ X1 Yi x2 Y2 Y 
The coordinates x, . YI , x, , ~ are related through 
constraint equations given by Eq. (I). 
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y ~---''--~--' ---''--..... ':' ,k {xi,yi) {xz ,yz) x 

Figure I Initial configuration of the double 
pendulwn 

EQUATIONS OF MOTION 

(1) 

The system is released from rest in the position shown 
in Fig. l. The point masses m 1 and m 1 are subjected 
to gravitational acceleration·g. 

With the fully Cartesian dependent coordinates shown 
in the figure, the kinetic and potential energy of the 
system, respectively, are: 

T 1 ( .2 .2) 1 ( .2 .2) 
= 2m' x, + Yi + 2m1 X2 + Y2 (2) 

V = m1gy1 + m,.p2 (3) 

One of the most widely used fonnulations for the 
dynamic analysis of constrained multi-body systems is 
the use of Lagrange multipliers method. The equations 
of motiOn of the double pendulum are derived from 
energy considerations and the constraint equations by 
using Lagrange equations. For the constrained system 
in consideration, the equation of motion is 

!!._( ar) _ ar + av _ ~r1 = Q 
dt aq ()q aq f e ( 

4) 

Substituting for T and V from etjs. (2) and (3), the 
equation of motion along with constraint equations 
become 

Mij - ~/l + F = 0 
""' 2 2 ,2 .... = X1 + Y1 - I = 0 (5) 

~2 = (x2 - x,)2 
+ <Y2 Y1)2 

- 12
2 = 0 

where Mis the mass matrix 
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m, 0 0 0 

0 "'• 0 0 
M = 

0 0 1112 0 

0 0 0 nl2 

ii is the acceleration vector 

ii = fi· .v, i2 Y2 r ; 
). is a vector of Lagrange multipliers 

J.. = (A >_]T. 1 2 • • 

Fis the vector of forcing functions 

F = ( 0 m 1g 0 m-Jt r; 
and ~, is the Jacobian matrix obtained from the 
vector function of constraint equations and is given by 

~ = a~ 
' oq 

Equation (5) is a set of differential algebraic equations 
(DAE's) where the Lagrange multipliers obtained 
from the constraint c;quations are part of the variables 
to be solved for, and the constraint equations are part 
of the equations to be solved In other words, the 
constraints are imposed on the solution variables 
through the Lagrange multipliers. Solutions to the 
DAE's are generally complicated mathematical 
problems. Thus, there is a need for simplified 
solutions. The penalty fonnulation is used to simplify 
the solution procedure to the DAE's by changing them 
to GDE's. For this purpose, the penalty method is 
employed whereby the constraint equations are 
directly incorporated as a dynamical system, penalized 
by a large: factor et, mto the equations of motion. The 
penalty fonnulation can be regarded as an alternate 
method to the classical fonnulations, viz-a-viz: 

i) use of the Lagrange multipliers method, 
ii) expressing equations of motion in tenns of the 

minimal set of variables, equal in number to 
the degrees of freedom. 

The penalty method is an intuitive method which 
yields an advantageous form of the equations of 
motiqn, especially for singular positions [ 1]. In this 
method, a fictitious spring, dashpot and mass are 
added to the system, in general. For the double 
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pendulum problem, only a fictitious spring or potential 
is added to the system at the joints betw~n the Jinks 
and nwses as shown in Fig. 2. By so doing, we forget 
all about the Lagrange multipliers and consider the 
addition of the potential 

(6) 

Y. 

« m1 h « nu 

Figure 2 Representation of the double pendulum 
for penalty formulation 

Thus, the constraint equations are introduced into the 
equation of motion via V*, and the Lagrange equations 
given by Eq. (4) become 

.!!..( ar) _ ar + .i.cv + v·> = Q 
dt ar; oq oq • c1 > 

av· 
where - = a~ ~ 

oq ' 
The penalty method, like the Lagrange method, 
operates on the variational formulation of the problem 
under consideration [2]. But unlike the Lagrange 
multipliers method, it does not require the introduction 
of additional unknown variables. However, an 
important consider.ation in the method is the choice of 
the penalty factor a. Therefore, substituting for r. v 
and v•, and after simplification, the equation of 
motion becomes 

(8) 

Thus, the set of equations of motion, given by Eq. (5), 
reduces to a set ofODE's given by Eq. (8). The term 
a~ t ~ represents the forces that are generated by the 
penalty system when the constraints cl> are violated. 

In the expanded form, the equation of motion is 
written as: 

m, () 0 0 i , 

0 "'1 () 0 .Y, 
0 0 "'2 0 i2 

0 0 0 "'2 .V2 

x, (x, - X2) 0 

Y1 (v, Y2) [ ::] ~ -m,g 
a 

0 (X2 x,) 0 

0 (V2 - y,) -m-£. 

In principle, a fictitious dashpot and mass can also be 
added to the system along with the fictitious spring. In 
such case, the equation of motion becomes 

Mlj + a~ [ci> + ~ + ~) = Q 
9 • ' 

(9) 

Including the constraints of velocity and acceleration 
removes any instability that may arise due to the 
fictitious spring. The term a~9(ci> + ~ + ~) • 
represents the forces that are generated when the 
constraints ci>, ~and cl> are violated. 

The solution of Eq. (8) coincides with the solution of 
the original problem given by Eq. (S) provided that a 
- 00• lllls condition is achieved by using large penalty 
factors. 

NUMERICAL ALGORITHM TO SOLVE THE 
EQUATION OF MOTION 

The introduction of the penalty factor renders the 
system of equations to be stiff which requires an 
unconditionally stable numerical method for its 
solution. Therefore, Eq. (8) is solved by using the 
Mid-Point Rule which is an implicit Runge-Kutta 
method of order 2 and unconditionally stable. The 
dillerence equation for the Mid-Point Rule is (S] 

Ii, .2. 
4 

ii, = -q 1 -
2 h 2 ··2 

4,.1. 
2 (IO) 

= -q I <i, 
2 h ··2 
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where 

h is a pre-set time-step. 

These ditTercncc equations are used along with the 
equilibrium equations al q. 1 to solve the equation of 
motion. Introducing the d{ti~rence equations into Eq. 
(8), the resulting equilibrium equation is obtained to 
be 

Letting 

F = __i_Mq. 1 + a~9~ - Mq - Q~ 
h 2 ··2 

Eq. ( l l) reduces to 

F = 0 

(11) 

(12) 

This equation is solved for q. 1 b~ using the ··-Newton-Raphson method. The meUlod is given by 

( 
aJiV) 1-• !:J.q = - -- F(qw,) 
aq. I 1•-

1•- 2 
2 

where aF = __i_M + a~ T~ 
aq I h 2 f f ··-2 

Equation ( ! 2) is now solved for q. s1tisfying a given 
error limit by iteration. ii. 1 and '~2 1 are obtained 

1+- 1+-
from Eq.(10). Once q. 1 i~obtained?the half-point 
value is used to detern{~ q;.1 and ti;.1 by using 

r~'.·I] = 1~;1 lq,.. q, 
+ h 

q. I ,._ 
2 

ii;.l 
2 

A numerical algorillun developed for solving the 
problem is given below. The calculations in the 
algorillun are carried out for each time step Ii. 

Step l -Read initial input data 

qo • tio 
-Read number of time-steps n 
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Step II. Compute q, and q, for ;tJr time- step 

Step Ill - Initialize q. 1 for Newton-•·-Raphson iteration 2 

- Read error tolerance E 

E = 1111qll s !Oe-611 q II 

Step IV. At q 1, for the i'h time-step ··-2 
a£V) 

- compute 
aq 

- compute if') 1 ··-2 

Step V . At q(J) 1 : ··-2 

-Solve for 11q 

- Compute qv•:) = q(J) 1 + !:J.q 
,._ t•-

2 2 

- Check for convergence: 
If 11q < E, go to Step VI 
Else, go to Step IV. 

Step VI. Compute q. 1 and ii 1 
J+- r+-

2 2 

Step VD. Compute qi•I andti;.1 

Step VID. Control time-step: 
- If number of time-step I< n, 

go to Step I. 
- Else, Stop. 

NUMERICAL EXAMPLE 

A numerical example of the nonlinear dynamic 
analysis of the double pendulum shown in Figure l is 
solved for 

m1 = m3 = 0.2 kg 
I,= 11 = 1.0 m 

with initial conditions 

qo = [ x, y, X2 Y2 r 
=[1 o 2or 

tio = [ x, .Y, x2 Y2 r 
= [OOOO)T 
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lo = ( i1 .91 i2 .92 f 
= [ 0 -g 0 -g y 

and forcing function 

Cl = [ 0 -0.2g 0 -0.2g y 

The simulation is canie~ out for 1=4s of 
simulation time using a time step •. ~1 = h = 0.02s. 

The penalty factor used is 
a= 10e6. 

The convergence criterion used is 
e = l~qll s IOe-6~ q II 

The nwnerical simulation is canied out using CAL80 
commands for nonline~ systems [3 ] 

1be results obtained from the computer simulation are 
shown in Figs. 3-6. 

0.2 

.o.• 
.f 

-u'--~-~-~-~-~-~-~~ 
0 0.5 u 2 2.5 3 l.5 

11 ... 

Figure 3 Displacement of mass m1 
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Figure 4 Displacement of mass 1112 
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Figure 5 Velocity of mass m 1 
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Figure 6 Velocity of mass m2 
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Figure 7 Phase space plot of mass m1 
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·• 
-'--~~~~~~~~~~~~ 

.a ..... .f .o• . ., .... ,,., 
Figure 8 Phase space plot of mass m1 

DISCUSSION OF RESULTS 

1. As can be seen from the output curves, the 
displacements y 1 and y 1 seem to be stable for the 
first 4 s for time step h = 0.02s. But the velocity 
response picks up instability before t = 4s and 
builds up very quickly. The reason for this is that 
no measw-e is taken to dissipate the energy in the 
system. 

2. The numerical algoritlun developed, based on the 
Mid-Point rule, for solving the problem is A­
stable. However, the introduction of the penalty 
factor a used to accoWlt for the constraint 
equations, causes some instability in the algoritlun. 

3. Figures 7 and 8 show the phase plots of the 
chaotic trajectories which show erratic behaviour 
of the double pendulum. This chaotic behaviour 
depends on the initial conditions used in the 
simulation. 

4. The phase space trajectories indicate some 
instability which arises from the instability of the 
nwnerical algoritlun involved. The use of the large 
penalty factor a induces some instability in the 
algoritlun. ~s instability can be removed by the 
choice of smaller time-step. 

CONCLUSION 

In the above studies on the double pendulum, new 
effects may be observed by varying the masses and 
lengths of the double pendulum. The algoritlun 
developed can be modified to include a fictitious 
dashpot and mass at the joints. This procedure 
smoothens the instability in the velocity response. 

The Mid-Point Rule used in the numerical algoritlun 
is not WlCODditionally stable due to the inclusion of the 
penalty facta. It is stable only for selected time-steps, 
which need to be worked out. At the same time, the 
error tolerance should be adequately small to yield 
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good results. With these considerations taken into 
account, the algoritlun developed yields good results 
and is suitable for the nonlinear analysis of the.double 
penuulum. 

Nomenclature 
I length 
111 point mass 
Ai mass matrix 
q vector of position coordinates 
tj vdocity vector 
ij acceleration vector 
Q, Vector of forcing functions 
T kinetic energy 
V potential energy 
a penalty factor 
cl> vector function of constrain equations 
~ Jacobian matrix q 
I I vector nonn 
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