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Abstract
Statistical analysis was carried out on the Internet
traffic data grabbed at Internet Service Provider
gateway. The analysis reveals the "bursty" nature,
which was explained through SelfSimilarity and
Long Range Dependence(LRD). In this work, it has
been shown that the Internet traffic and Packet
Round Trip Delay visuaiized as a time series are
statistically selfsimilar. The autocorrelation
function decays reveals the data under
investigation exhibits Long Memory or Long Range
Dependence. The degree of self similarity of Packet
Round Trip Delay as measured by Hurst Parameter
is presented and was found that it is direct~v
related to network traffic load.
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INTRODUCTION

Leland, et al [2] present a preliminary statistical
analysis of the fractal nature of a High quality
Ethernet Traffic data collected from Bellcore

Morristown Research and Engineering Center and
comment in detail the presence of "Burstiness"
across an extremely wide range of time scales. This
fractal like behaviour of aggregated Ethemet LAN
Traffic is different from conventional telephone
traffic. Subsequent research work on high traffic
networks such as Intemet also leads to having
similar fractal like behaviour.

Selfsimilarity and fractals. notions pioneered by
Benoit B. Mandclbrot [3], describe the
phenomenon where a certain property of an object
for example, a natural image, the convergent sub
domain of certain ({vnal1lical systems, a tim.e series
(the mathematical object of our interest)- is
preserved with respect to scaling in space and/or
time. If an object is Self-similar or fractal, its parts
when magnified resemble -in the suitable sense 
the shape of whole. Stochastic Selfsil1lilarity
admits the infusion of non-detenninationism as

necessitated by measured traffic traces but,

nonetheless, is the property that can be illustrated
visually. Unlike deterministic fractals, the objects
do not possess exact resemblance of their part with
the whole at finer details. Indeed, for measured
traffic traces, it would be too much to expect to
observe exact, dctenninist self-similarity given the
stochastic nature of many network events (e.g.
source arrival behaviour) that collectively influence
actual network traffic. Second order statistics are

statistical properties that capture burstiness or
variability. and the Autocorrelation function is a
yardstick with respect to which scale invariance
can be fmitfully defined.

This nature of time-invariant burstiness is

completely different from the traditional tele-traffic
models, such as the Poisson Process, which has a
"smoothed-out" burst stmcture as the time

aggregation increases; that is. after a cert,'lin time
scale there are no surprises due to spikes of Traffic.
For actually measured traffic the correlation in
traffic can extend to a wide range of different time,
or mathematically. the correlation fiUlction of
realistic traffic decays with lag time in the way of
power law, which is the property of the so called
Long Range Dependence (LRD); while for
traditional models of generated traffic, its
correlation fiUlction decays exponentially fast;
resulting in .','hortRange Dependence. [1]

The main objcctives of this paper are: (a) To study
the statistical nature of Intemet Packet Traffic and

Round Trip Delay Processes and (b) To illustrate
some of the differences between self-similar

models and the standard models for packet traffic
considered in the literature. Accordingly, tIllS paper
has tIle following sections.

THE INTERNET

The word internet (also internetwork) is simply a
contraction of the phrase interconnected network.
However. when written as a capital "1" the Internet
refers to a worldwide set of intercOlUlected
networks. so the Intemet is an intemet. but the

reverse does not follow. One of the greatest tIlings
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about tlle Internet is that nobody really owns it. It is
a global collection of networks, bOtll big and small.
TIlese networks connect togetller in many different
ways to form tlle single entity tllat we know as tlle
Internet.

Current data networks typically use packet
switching as a means of dynamically allocating
network resources on a demand basis. Packet

switching had been widely used because it
facilitates tlle interconnection of networks with

different architectures, and it provides flexible
resource allocation and good reliability against
node and link failure. Packets of a single traffic
stream may take different routes and reach the
intended destination. This process of assigning
packets to available routes is called Routing and tlle
devices facilitating this operation are called
Routers. Routing of the Internet has two features:
Flexibility and Scalability. TIle Internet provides
the Dynamic Routing based on the exchange of the
Routing Information among Routers.

Each Internet communication consists of a transfer
of infonnation from one computer to another.
When a file is transferred. it is not sent across the

Internet as a continuous block of bits, rather the file
is broken up into pieces calk.d pacJl!/s, and each
packet is sent individuaily. Many different
protocols collectively carry out the transfer. The
two core protocols are TCP, tlle Transmission
Control Protocol and IP, the Internet Protocol.

Charactclistics of Internet Traffic

Internet engineering and management depend on an
understanding of the characteristics of network
traffic. Statistical models, which can generate
traffic that mimics closely the observed behavior
on live Internet wires, are needed. Models can be
used on their own for some tasks and combined
with network simulators for others, but the
challenge of model development is immense.
Internet traffic data are ferocious. Their statistical

properties are complex, databases are very large,
Internet network topology is vast, and the
engineering mechanism is intricate and introduces
feedback into the traffic.

Packet header collection and organization of tlle
headers into connection flows yields data rich in
infonnation about traffic characteristics and serves

as an excellent framework for modeling. Many
existing statistical tools and models, especially
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tllOse for time series, point processes, and marked
point process, can be used to describe and model
the statistical characteristics, taking into account
tlle structure of the Internet, but failed to
exhaustively represent tlle properties of the Internet
traffic's inherent nature. Therefore, new tools and
models are needed. Internet traffic data are exciting
because they measure an intricate, fast-growing
network connecting up tlle world, transforming
culture, politics, and business. A deep analysis of
Internet traffic can contribute substantially to
network perfonnance-monitoring, equipment
plamung, quality of service, security, and tlle
engineering of Internet communications
teclmology. Further analysis can be made on traffic
measurements to produce statistical models.

Modeling Internet traffic data will require new
approaches, new tools, and new models for time
senes data. Long-range Dependence is pervasive in
Internet traffic data, but the pervasiveness had to be
discovered. After the discovery of long-range
dependence, Internet traffic can be studied tllfough
the vehicle of Sel.fSimilar processes, invoking tile
creative work of Mandelbrot [3]. Traffic models
for ycice traffic, developed over tlle years to serve
the telephone network, did not apply as might have
been hoped because voice traffic does not give rise
to the same traffic characteristics as Internet data
traffic, \'·hich is burstier.

Pa~kel Delays in the Internet

A packet round-trip delay is tlle sum of delays on
each subnet link traversed by the packet. Each link
(or hop) delay in turn consists of four components,
including processing delay, Queueing delay,
transmission delay and propagation delay. Fixed
the packet length and the route, the packet round
trip delay only changes with the Queueing delay,
which in Internet is changed willI tlle fluctuation of
traffic. Internet is expanding dramatically fast, as it
is the most complicated collection of Networks
connected together. Many well developed and
currently developing applications run across
Internet to go around the global network. Some
applications (audio, video) are sensitive to tlle
performance of the whole Internet, or precisely, the
Packet Delay in Internet. When data networks
become heavily utilized, the combined bandwidtll
demand from all sources occasionally exceeds tlle
network capacity. For data, llus is not a problem. It
simply means tllat the data does not arrive as
quickly; it is delayed by a few additional
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milliseconds. For data traffic, the motto is "Better

late than never", so it does not have to pay the
penalty of retransmission.

Video and voice traffic, on the other hand, must get
a fairly regulated nmnber of packets through to the
destination in a timely manner. If video/voice
packets are late enough to have missed their "play"
window, tlley are useless. Hence the motto for
video/voice traffic is "Better never tllan late." The

network should drop traffic that is late so it does
not consmne additional scarce network resources.

The capability to provide resource assurance and
sen,ice differentiation in a network is often referred
to as quali~y of senJice (QoS). QoS teclmiques are
designed to balance the needs of voice, video, and
data across tlle network. QoS reserves a portion of
tlle network bandwidth for the predictable use of
tlle voice/video and lets the data traffic consume

the remainder. By ensuring tlJat bandwidth is
available when needed for voice/video traffic QoS
teclmiques can reduce or eliminate audio pops,
video artifacts, and other performance problems.

SELF-SIMILARITY & LRD

The term "Traffic Theory" originally encompassed
all mathematics applicable to the design, control
and management of the Public Switched Telephone
Networks (pSTN); Statistical Inference.
Mathematical Modeling. Optimization, Queuing
and Performance Analysis. Later, its practitioners
would extend tIllS to include data networks such as
the Internet.

Traditional tele traffic theory as applied to POTS
(plain Old Telephone Service) has arguably been
one of the most successful applications of
mathematical technique in industry. It has led to
first-rate telephone networks. quality of service we
fully rely on and take for granted. Among the main
reasons for tillS tremendous success of tele-traffic

theory and practice in traditional telephony are the
highly static nature of conventional PSTNs and a
well defined and ever present notion of limited
variability, a trade mark of homogenous systems
where one talk about "typical" users and "generic"
behaviour and where averages describe the system
perfonnance adequately.

The static nature of traditional PSTNs contributed

to the popular belief in the existence of "universal
laws" governing voice networks, the most

significant of which is the presumed Poisson nature
of call arrivals at links in the network traffic is

heavily aggregated. TillS law states that call arrivals
are mutually independent, and that call inter
arrivals times are all exponentially distributed, with
one and tile same parameter.

Failure of Poisson Modelling

One might expect that the voice network modelling
success story would enjoy another trillIllph when
applied to data networks, and indeed tIJis has been
attempted. But in fact much of the voice traffic
modelling has proven notIling short of disastrous
when applied to data networks; for the simple but
profound reason that the rules all change when it is
computers not humans doing the talking.

Voice traffic has the property that is relatively
homogenous and predictable. and from a signaling
perspective. spans long time scales. Consequently,
many concurrent voice connections can be easily
"Multiplexed" to share a common (expensive) wire
or "link" by allocating a fixed amount of the link's
capacity to each connection. Voice networks have
been engineered in a Circuit Switching faslllon.

A damaging legacy of the telephony influence on
data network research was a virtually complete
absence in the 1970s and 1980s of attempts to
validate crucial modelling assumptions against
actual data network traffic measurements. Data

traffic is highly variable or very "Bursty". That it
does not come at a steady state. but instead it starts
and fits with lulls in between. The term "Bursty"
has a readily understood intuitive meaning, but it
ltmls out that nailing down its precise,

mathematical meaning has prorou~ld implicationsfor developing mathematical modlf/ of Network
Traffic ..

The relevant mathematics for POTS is one oflimited variability in both time (traffic processes
are either independent or have temporal
correlations that decay exponentially fast) and in
space- i.e. the distribution of traffic related
quantities have exponentially decaying tails, but for
data networks, the mathematics is one of high or
extreme variabiliZv. 15]

Figure I is a visual demonstration of the failure of
Poisson modelling to capture the burstiness present
in actual network traffic. The difference between
the Poisson Model and the· measured traffic is
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obvious and striking: as the time scale increases tile
Poisson Traffic "smoothes out", becoming quite
talne, while the measured traffic shows no such
predilection. The difference is crucial from an
Engineering perspective: Traffic that behaves as
shown in Fig. lea) can be easily engineered for.
Above a certain time scale there are no surprises 
every tiling boils down to knowing tile long tenn
arrival rate; no need for big buffers in routers or
switches, no reason for being conservative in
choosing safe operating points for engineering back
bone trunks, and why even think of user perceived
Quality of Service as being a relevant issue? In
stark contrast, measured traffic like tIlat showed in
Fig. l(b) is "wild", remains so even on quite coarse
time scales, and plays havoc with conventional
traffic engineering.

experts' arguments. However, as voice traffic turns
out to differ drastically from data traffic, so do the
underlying mathematical ideas and concepts.

Statistically, Long Range Dependence, i.e
Autocorrelations that exhibit power law decay,
captures temporal high variability in traffic
processes. On tile other llalld, extreme fonus of
spatial variability can be described parsimoniously
using heavy tailed distribution with infinite
variance, i.e, probability distribution F with the
property that for large x values

(1)

Where k, is a positive finite constant that does not

depend on X and where the tail index a is in the
interval (0,2). (For example, tIlis property is
satisfied by the well-known family of "Pareto
Distribution", originally introduced for modelling
the distribution of income within the population( 4].

Figure lea) Synthesized tralTic from a Poisson
model Vs. (b) Intemct tralTic to which its mean
and variance fit, viewed over three ordcrs of

aggregation. Source: refercnce [6]

Welcome Fractals

Many networking experts argue that the only way
to gain an in-depth understanding of data traffic is
-simply put- doing away with teletraffic tradition
and starting from scratch. Interestingly,
Mathematics, which has been largely responsible
for tile success story of the teletraillc theory for the
voice network, has recently provided strong
anununition in supporting of the Networking

(2)

In view of the general skeptism tIlat exists in tile
different circles in the mathematical community
concenling the needs, usefulness, and
appropriateness of fractals, what can one say about
fractal like scaling in measured date network
traffic? To examine this question, we call a
discrete time covariance stationary, zero mean

stochastic process X=(Xk : k "?l)exactly Self-
Similar or Fractal with scaling parameter

Where k2 is a positive finite constant tIlat does not

depend on r. f(.) is simple, often linear,
function of D; D is a fractal dimension. To declare
fractality, tile above relationship is supported to
hold for range of different r -values with a value
of D tIlat is less than the embedded dimension.

It tlUlIS out that Power Law behavior in time or

space of some of their statistical descriptions often
cause the corresponding traffic process to exhibit
Fractal characterstics. In the present contex1: we say
that a traffic process has fractal characterstics, if
there exists a relationship between certain
quantities Q of the underlying process and
resolution as the general fonn

(b)(a)
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Second order statistics are statistical properties that
capture burstiness or vwiability, and the
autocorrelation function is a yardstick with respect
to which scale invariance can be fruitfully defined.
The shape of the autocorrelation function-above
and beyond its preservation across rescaled time
series- plays an important role. In particular,
correlation, as a function of time lag, is asslUned to
decrease polynomially as opposed to exponentially.
The existence of non-trivial correlation "at a

Figure 2 Stochastic Self-Similarity-in tile
"Burstiness preservation sense" -across time
scales (a)IOOs (b) lOs (c) Is (d) lOOms

Unlike detenninistic fractals, tl1e objects
corresponding to Fig. 2 do not posses resemblance
of their parts witll tile whole at finer details. Here,
we assume tI13t tlle measure of "resemblance" is

tile shape of tile graph with the magnitude suitably
nonnalized. Indeed, for measured traffic traces, it
would be too much to expect to observe exact,
detenninistic self-similarity given the stochastic
naturd of many network events (e.g. Source arrival
behavior) that collectively influence actual network
traffic.

traffic series whose first 1000 second interval is

"blown up" by a factor of ten. TllllS, the trw1cated
time series has a time granularity of 1Os. The
remaining two plots (Figs. 2(c) and (d)) zoom in
furtller in the initial segment by rescaling
successively by factor of 10, for Is and IOms
granularity respectively [4].

:": •• :>; f, ••• ~ ••• ~ •••• ~ ••••••••• ~ ••• '.' •••••• ", ••••.•••

(3)X(m) _ H-1X-d m

Stochastic Self-Silnilarity admits tlle infusion of
non-detenninism as necessitated by measured
traffic traces but, nonetheless. is a property that can
be illustrated visually. Fig. 2(a) shows a traffic
trace, where throughput in Bytes plotted against
time where time granularity is 100s. That is, a
single data point is the aggregated traffic volume
over a 100 second interval, Fig. 2(b) is the same

Mathematics of Sclf-Similatity

Self-Similarity and Fractals. notions pioneered by
Beniot Mandelbrot, [3] describe the phenomenon
where a certain property of an object-for example,
a natural image, tile convergent sub domain of
certain dynamical system, a time series (the
mathematical object of our interest)-is preserved
with respect to scaling in space and lor time. If an
object is self-similar or fractal, its parts, when
magnified, resemble. - in a suitable sense - the
shape of the whole.

When assessing tlle validity of describing a process
using a self-similar model, one must be very
careful not to mistake actual non-Stationarity for
highly variable but stationary fractal behavior. The
two can appear very similar, both to the eye and to
a nwnber of statistical tests. However tillS concern

can be addressed by making good use of the very
large size of Network traffic traces.

The switch from Poisson to Fractal thinking in
Network traffic research has had a major impact on
the understanding of actual network traffic to the
point where we now know why aggregate Internet
Traffic exhibits fractal-scaling behavior over
different time scales. A measure of tlle success of

tIlis shift in tIlinking is that the corresponding
matllematical argwnents are at the sanle time
rigorous and simple, are in full agreement with tlle
Networking researchers' intuition, and can be
explained readily to a non-networking expert.

Where tlle equality is understood in the sense of
Finite dimensional distributions, and where the

aggregated process x(m) are defined by

H E [0.5,1) if for all levels of aggregation or

"Resolution" m :2: 1.
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distance" is referred to as Long Range

Dependence.

A stochastic process or time series X(t) is exactly
Second Order Self-Similar Witll Hurst Parameter

H,(V2 <H <1) if

r(k)=U/i'((k+lr _2eH +(k-1r) (5)

for all k z 1.

In the case of asymptotic second order self
similarity however, by the restriction
o .5 < H < 1 in the definition, Self-Similarity
implies Long Range Dependence, and vise
versa[4]. It is for tltis reason and the fact that
asymptotic second-order Self-Similar Processes are
employed as "Canonical" traffic models, that we
use Self-Similarity and Long-Range dependence
interchangeably when tlle context does not lead to
confusion.

X(t) is asymptotically Second Order Self-Similar if ESTIMATION OF LONG-MEMORY

It can be checked that Eq. (5) implies

r (k ) =-= r (m) (k ) for allm z 1. Thus second order
self similarity captures the property that the
correlation stmcture is exactly (Eq. (5)) or
asymptotically (the weaker Eq. (6)) preserved
under time aggregation.

The form of r(k) =O"h ((k + I)'H - 2k'H + (k -1r) is not

accidental and implies further stmcture; called
Long Range Dependence Second Order Self
Similarity (in the exact or asymptotic sense) has
been a dominant framework for Modeling Network
Traffic.

Many methods for estimating the self-similarity
parameter H, called Hurst Parameter, or the
intensity of Long-range dependence in a time series
are available. They are typically validated by
appealing to self-similarity or to an asymptotic
analysis where one supposes that the sample size of
the time series converges to infinity. For the
analysis of Internet Traffic and Packet Round Trip
Delay time series data, we use two Heuristic and
one Periodogram based methods. Out of several
Heuristic methods to estimate the Long memory
parameter H, the R/S statistic, which was first
proposed by Hurst (1951) in a Hydrological
context, and the variance plot are discussed. The
Periodogram-based approach used in tlle analysis is
Whittle Estimator.

r(k)- H (2H _1)k2H-2• k ~ 00 (7)

Let r(k) = r (k)/u 2 denote the
Autocorrelation fimction. For O<H<I,H*O.5 it

holds

In particular, if 1/2 < H < I, r(k)

asymptotically behaves as Ck - fJ , for

o < j3 < I, where C>O is a constant, and

fJ = 2 - 2 If . Then it implies:

That is, the autocorrelation function decays slowly
(that is, Hyperbolically), which is the essential
property that causes it to be not sununable. When

r(k) decays hyperbolically, we call the
corresponding stationary process X(t) Long range
Dependent. X(t) is Short Range Dependent if the
Autocorrelation fl111ctionis summable .

(9)
R(t,k) = ~~~[Yt+i - Yt - f(Yt+k - YJ]-

min [Yt+, - Yt - .!..-(Yt+t - Yt)]0,"'" k

Suppose we want to calculate the capacity of a
reservoir such that it is ideal for the time span

between t and t + k . To simplifY matters, assume
that time is discrete and tllat there are no storage
losses. By ideal capacity we mean that we want to
acltieve the following: the outflow is uniform, that

at time t + k the reservoir is as full as at time t,
and that the reservoir never overflows.

R/S Statistic

Let X; denote tile inflow at time i and

y =..f x. is tile cumulative inflow up to time} L..., ,
j •• J

j . Then the ideal capacity can be shown to be

equal to

(8)
~

'Lr(k)=oo
k =-<11'
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R(t,k) is called the adjusted range. In order to

study the properties that are independent of the
scale, R ( t •k) is standardized by

(13)

td
S(t,k) = ,/k-' 'L (X I - X t,d'i- t+ 1

-- _I l+k

where X I,k = k LXi
1=:/+1

(10)

Variance Plots

One of the striking properties of Long-memory
processes is tllat tlle variance of the sample mean

converges slower to zero than n -( , where n is tlle
sample size,

Var (X n) "" (:n2H-2

where c>O.

Then, the ratio !!..
S

R(t,k)

s(t,k)
(ll) Equation (13) suggests the following method for

estimating H: [7]

1. Let k be an integer. For different Integers k in
tlle range 2 ~ k ~ n / 2, and a sufficient

munber (say nIk) of sub series of length k,
calculate the sample means

is called the Resealed Adjusted Range or RIS
statistic. Hurst plotted the logarithm of RIS against
several values of k. He observed that, for large

values of k, log R I S was scattered around a

straight line with a slope that exceeds Ifz. In
probabilistic tenninology this means that for large
k,

X,(k),Xz(k), , Xm,(k)

overall mean

and tlle

log E [R IS] "" a + H log k •
withH >1/2

(12) X (k) = In k -, f x / (k)
J"

(14)

This empirical finding was in contradiction to
results for Markov Processes, Mixing Processes,
and other stochastic processes that where usually
considered at that time.

. For any stationary process with Short-range
dependence, RIS should behave asymptotically like

constant times k 1/2 , Therefore, for large values of

k, log R / S should be randomly scattered arOlmd

a straight line with slope Ifz,

With Q(t,k) = R(t,k), the R1S method can be
S (t, k)

summarized as foHows: [7]

I, Calculate Q for all possible (or for a sufficient

number of different) values of t and k.

2, Plot log Q against log k ,

2. For each k, calculate the sample variance oftlle
sample means

X j(k), j = 1,2, , mk•

S2(k)=(mk -1)-'f(xj(k)-X(k»2 (15)
k =1

3. Plot logS2(k) against logk

For large values of k, the points in tllis plot are
expected to be scattered around a straight line with
negative slope 2H-2. The straight line is fitted with
least squares method.

In tlle case of Short-range dependence or
Independence, the ultimate slope is
2 xl/ 2 - 2 = - 1. Thus, the slope is steeper
(more negative) for short memory processes.

Periodogram Method

where A. is a frequency, N is the number of terms
in the series, and X . is tlle data.1

3. Draw a straight line log Q = a +b log k that

corresponds to the "ultimate" behaviour of the
data. The coefficients a and b can be

estimated, for instance by least squares [8],

Set the value of H to be the estimated slope b
of the fitted straight line,

The Periodogram of the time series:

1 I N I'J(.<.)=--'L Xje'J'
2:rN J"

(16)
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Because I (A ) is an estimator of the Spectral

density, a series with Long-Range dependence
should have a Periodogram which is proportional to

IAI1-2H close to the origin. Therefore, a regression

of the logaritlun of the Periodogram on tlle

Logaritlun of the frequency A should give a
coefficient of 1-2H . Tlus provides an
approximation to tlle parameter H.

The Whittle estimator is based on the Periodogram.
It involves the function:

sequenced as a time series. Then tltese time series
are analyzed to investigate the statistical properties.

Figure 3(a) and (b) show tlle Internet Traffic
intensity in Packets per time unit versus index of
the sequence. Fig. 3(a) represents tlte original time
series (lOms aggregation) and Fig. 4(b) represents
a four level aggregation of the original time series
(40ms).

18000

16000

14000

• 1(11.) dl1.
Q(17) = J./(I1.;17)

(17)
12000

10000

8000

where I (A) is the Periodogram and f (A; 17) is the

spectral density at frequency A, and where 17

denotes the Vector of Unknown Parameters. The
Whittle Estimator is the value of 7] which

Minimizes the function Q (1] ) .

EXPERIMENTATION AND RESULTS

6000

AOOO

'000

o
o

000(1

1 DUO 1 ~OO

Time Units, Unll;'Om$

(a)
Inl9(nel Tralrlc

2000 2500

Tllis section presents the measurements and
experimentations we follow to prove the Self
S'imilarity of Intemet Packet Traffic and Intemet
Packet Round Trip Delay Processes. The statistical
properties observed on the collected Intemet traffic
and Packet Delay data are discussed.

LRD in Internet Tnlffie

The collected traffic data is a count of the number

of packets or bytes traversing a selected port per a
J Oms time unit. Tile collection is done using Artiza
Packet Trapping Software for trapping Intemet
packets at an Intemet Service Provider Gateway
(Etluopian Telecommunications Corporation
(ETC» and AG Group Etherpeek version 3.5 for
trapping packets at the Intemet Gateway in a
company Local Area Network (Icon Networh).
Tllese software tools only count tlle traffic Intem;i~v
(number of Packets or Bytes) and have no facility
for revealing the content of the packets.

Scale In variance and Autocorrelation

The nummwn resolution of the packet trapping
software is IOms. Tile number of bytes of the
packets collected for each Wms time interval is

.Tournai of EEA, Vol. 19, 2002
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Figure 3 Intemet Traffic in (a) 10ms and

(b) 40ms time aggregation

As can be seen from Fig. 3, tlle burstiness of the
traffic never smoothed even though different levels
of aggregation are used. Tllis suggests tllat tllere is
no natural length of a burst in Intemet traffic; the
bursts remain in all levels of aggregation.

Figures 4(a) and (b) depict the Autocorrelation of
the original time series (lOms) for tlle first 2000
lags and its aggregated (50ms) time series for tlle
first 500 lags, respectively.
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As can be seen from Fig. 4, the Autocorrelation
decays slower than the exponential rate.

different from 0.5 and is estimated using least

squares to be 0.90126.

,"
15
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Figure 5 R/S Analysis ofIntemet Traffic Trace

VARIANCE PLOT

TIle result obtained using the Variance Plot method
proves that the data has long memory or it is long
range dependence. The estimated Hurst parameter
equals 0.80612. Figure 6 asserts tltis.
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Figure 4 Autocorrelation of (a) the original time
series (b )its SOms aggregated time series

Hurst Parameter Estimation

TIle intensity of Selj-Similarity and Long-Range
Dependence can be catched through the help of the
Hurst Parameter. The following section presents
tIle results of the Hurst Parameter estimation

tedmiques applied to the collected Intemet Traffic
Data. (Recall that values of H in the range (0.5 <' H
<J) imp(v Selj-S'imilari(v or Long-Range
dependence).

R/S analysis

TIle result obtained after analyzing the collected
Intemet Traffic data using the Rescaled Range
(RISJ analysis shows the self-similar behavior of
the Intemet traffic. TIle value of H (Hurst
parameter) obtained was 0.90126.

Figure 5 depicts the log-log plot of R/S statistic. It
shows an asymptotic slope that is distinctly
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Figure 6 Variance plot of Intemet Traffic Trace

The Whittle Estimator

The result obtained using the Whittle Estimator
method proves that the data has long memory or it
is long-range dependence. The estimated Hurst
parameter is between 0.96 and 0.97.

LRD in Packet Round Trip Delays

The calculation of packet delay needs four time

stamps, namely, TJ, T2 ' TJ and T4' When a

computer sends out a packet, it records the leaving

Journal of EEA, Vol. 19,2002
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Figure 7 Packet Round Trip Delay original
series and its fourth aggregation

Figure 8 displays the Autocorrelation functions of
the two Packet Round Trip Delay Processes. As
can be seen, tlle Autocorrelation decays slowly (as
a Power Law), in contrast to exponential decay
expected from traditional models.

time (T]) on the out going packet. When the packet
gets to the peer, the peer records the arrival time
(1'2) on the packet too; then the peer passes back the
packet and records the lem1ing time ([3) on the
back packet. When the packet gets back to the
sender, tile sender records down receiving time
(1'4). [9]

(16)

We used a custom developed program (VBPing),
which uses TCPIIP's Ping Application to calculate
tile Packet Round Trip Delay. A packet round-trip
delay is tile sum of delays on each subnet link
traversed by the packet. Each link (or hop) in turn
consists of four components, including Processing
delay, Queueing delay, Transmission delay and
Propagation delay. So a packet Round Trip delay
process, T (I), is a random variable at time t.

T (I) describes the packet round trip delay
(Stochastic) process. T (I) can be studied through

tile characteristics of a time series T, . It is obtained
by discretizing T (I) with t. Simply, Tj is a

sample process of T (t) at t = tj where

i = 1,2,3, In our case ti is tile time at which
the ping echo reply is received.

Scale Invariance and Autocorrelation
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When the Packet Round Trip Delay (or Round trip
time or RTT) is viewed in different aggregation
levels, it still kept its Bursty nature. In other words,
packet round trip delay is highly variable. This
property is presented in Figs. 7(a) and (b). It is
obtained by pinging one of the yahoo. com servers
(IP Address: 6./.58.79.230).

(a)
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Figure 8 Autocorrelation oftlle Packet
Round Trip Delay Process

To investigate tile effict of Network Load on tile
LRD of Packet Round Trip Delays, we ping ETC's
DNS server (IP Address: 196.27.22.43) during high
traffic time (50-12M!) alld negligible traffic
(3AM-4AM). nus hour dem.'\Tcatjon is based on
the local population Interr.et browsing trend, since
the server is located m Addis Ababa. When tlle

Hurst parameter is estimated for tllese different
time series, there is a significant change. Results
show a Hurst parameter near to J during busy times
or High Network load and near 0.5 during
negligible traffic times.

Figures 9 displays the Hurst parameter estimation
results using Variance-Time plot. As can be seen
from results displayed in Fig. 9 (a) and (b) tilere is
a variation in the intensity of self-similarity, as
measured by the Hurst parameter, for tlle busy and
less busy periods.
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Figure 9 Hurst Parameter estimates of
the Packet Round Trip Delay of the
ETC's DNS Server (a) During busy
hours, H=O.79403 (b) During less busy
hours. H=O.52656

CONCLUSIONS AND RECOMMENDA nONS

In tlllS paper, Study of Internet Traffic and Packet
Round Trip Delays are covered. With proper
statistical and mathematical tools and computer
programs, the following main findings are taken
out as results.

• Internet traffic and Packet Round Trip Delay
processes, as seen as a time series. are
statistically Self-S'imilar. The autocorrelation
function doesn't decay exponentially, a slow
decay is observed. Hence the data sets have
Long Range Dependence (LRD).

• The degree of Self-Similarity, as measured by
tlle Hurst Parameter. of Packet Round Trip
delay process is dependent on the Network

Load. As the utilization increases tlle Hurst

parameter will tend to be close to 1.

Important implication of the long-range
dependence and scale invariant "burstiness" of tlle
Internet traffic is drastically different from both
conventional telephone traffic and from stochastic
models for packet traffic usually considered in the
literature (Example is tlle Poisson Model). Traffic
models for voice traffic, developed over tlle years
to serve the telephone network, did not apply as
might have been hoped because voice traffic does
not give rise to the same traffic characteristics as
Internet d:'lta traffic. which is burstier.

With the help of these findings one can ex1end tllis
work in the following areas:

• Physical modelling of self-similarity:
Developing physical models that can explicate
traffic characterstics in teons of elementary,
verifiable system properties and network
mechrullcs.

• Traffic control for self-similar traffic: It can be
exploited on two fronts: One as ex1ension of
performance rulalysis in the resource
provisioning context and the otller from tlle
multiple time scale traffic control perspectives
where correlation stmcture at large time scales
actively exploited to improve network
performance.

• Congestion control jbr self-similar network
traffic: This can be facilitated by using tlle
long-teon correlation stmcture present in long
range traffic for congestion control purposes.

• Wavelet ana~vsis of self-similar or scaling
phenomenon: Due to their ability to localize a
given signal or time series both in time and
scale (or frequency), wavelets provide a
powerful and refined tec1mique for detecting
and quantifYing scaling behavior in measured
traffic.

• Self-similari(v and Network performance: How
a Queueing system perfonn when Packet
arrivals taken from Self-Similar processes.
Also effect of self-similarity on network
Transport protocols, such as TCP throughput
performance can be studied.

Journal of EEA, Vol 19, 2002
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