

Journal of EEA, Vol.38, July 2020 75

APPLICATION LAYER DDoS ATTACK DETECTION

IN THE PRESENCE OF FLASH CROWD
 Biruk Asmare Muse, Surafel Lemma Abebe

Addis Ababa Institute of Technology, Addis Ababa University

{biruk.asmare, surafel.lemma}@aait.edu.et

ABSTRACT

Application layer DDoS attacks are growing at

an alarming rate in terms of attack intensity

and number of attacks. Attackers target

websites of government agencies as well as

private business for different motives. In some

situations, application layer DDoS attacks

occur together with characteristically

analogous flash crowds. This paper focuses on

distinguishing application layer DDoS attacks

from flash crowds. Both flash crowd and

application layer DDoS attack cause denial of

service. Flash crowds come from sudden surge

in traffic of legitimate requests. Whereas,

application layer DDoS attacks are

intentionally generated by attackers to cause

denial of service. Distinguishing between

application layer DDoS attack and flash crowd

is important because the response taken for the

case of flash crowd is different from response

taken for application layer DDoS attack. Flash

crowds are legitimate requests which should

be serviced. Application layer DDoS attacks,

on the other hand, are malicious requests that

should not be serviced. In this research,

supervised machine learning based application

layer DDoS detection approach is proposed to

distinguish between application layer DDoS

attack and flash crowd. Features that help

distinguish application layer DDoS attacks

from legitimate flash crowds were identified.

Six supervised classifiers were evaluated using

World Cup 98 flash crowd dataset and

experimentally generated application layer

DDoS attack dataset. The results show that

decision tree outperformed other classifiers

considering combination of classification time,

F1-score and FPR. Decision tree has F1-score

of 99.45% and false positive rate of 0.47%.

Keywords: DDoS attack, flash crowd,

application layer

INTRODUCTION

Distributed Denial of Service (DDoS)

attacks are attacks against availability of

Internet services. DDoS attacks are divided

into application layer and network layer

attacks. Network layer attacks exploit

flaws of network and transport layer

protocols while application layer DDoS

(APP-DDoS) attacks use application layer

protocols such as HTTP, FTP and SMTP

[1, 2]. The attack is conducted after

creating a successful TCP connection. This

characteristics makes the attack resistant to

most network layer detection and

mitigation systems, and hence, difficult to

detect [1].

As the threats of APP-DDoS attacks grow

in type and complexity, a number of

approaches were proposed to help

distinguish between APP-DDoS attack and

normal activity [1, 2, 3, 4, 5, 6].

In this research, we deal with APP-DDoS

attacks that occur together with flash

crowds. Flash crowd is a sudden or

anticipated large surge in number of

requests to a website by legitimate clients

due to the addition of some news or when

a new product is released [4]. Application

layer DDoS attacks have similar

characteristics as legitimate flash crowds.

Hence, distinguishing between flash

crowds and APP-DDoS attacks is a very

important network security problem.

Realizing the importance, several

researches proposed different approaches

[3, 7, 8, 9, 10].

The existing approaches that are used to

distinguish APP-DDoS attacks from flash

crowd have three limitations. The first

limitation is that the approaches rely on

one or two features for detection [8, 10].

This impacts the robustness of such

Biruk Asmare Muse and Surafel Lemma Abebe

Journal of EEA, Vol.38, July 2020 76

detection systems and helps attackers to

easily mimic legitimate requests in their

attack. The second limitation is that some

approaches rely on network layer

information such as IP address entropy and

packet flow rate [3, 9]. However, it is not

difficult to deploy proportional attack

machines to that of legitimate machines in

flash crowd. The third limitation is that

existing information theory based

approaches require accurate model of

legitimate traffic as a baseline [9]. This is

usually difficult to obtain considering the

variable nature of internet traffic.

To address the aforementioned problem,

we propose a system that distinguishes

APP-DDoS attacks from legitimate flash

crowds using combination of five features:

request rate, page popularity, download

rate, request inter-arrival time and ratio of

successful requests. We conjecture that

these features will help to distinguish

DDoS attack from flash crowd. The

features could easily be obtained from web

server logs and computed by considering a

given time interval, called session time, for

each unique client. A client is a machine

which is identified by an IP address and

makes a request to a server. The core part

of the proposed detection system is a

supervised learning classifier that classifies

a client to either normal client or attack

client. The classifier is trained using

examples of both flash crowds and APP-

DDoS attack. The examples are collection

of records which contain feature values.

To evaluate our proposed approach, a data

set containing examples of flash crowd and

APP-DDoS attack is prepared. The World

Cup 98 data [1] is used to model flash

crowds. World Cup 98 data is a collection

of requests made to www.france98.com

during the duration of World Cup 98

football game. World Cup 98 data set is

used as flash crowd data set in related

researches [3, 8, 11, 12]. We prepared

application layer DDoS attack data set by

performing attack on locally hosted

version of the same website using BoNeSi

[13] DDoS attack tool.

Using the prepared dataset, we tested our

proposed approach in terms of

performance of candidate classifiers for

detection, effect of session time on

detection performance and contribution of

identified features for detection. The result

shows that although AdaBoost, random

forest and decision tree classifiers have

very close classification performance,

decision tree outperformed all other tested

classifiers considering classification time.

Decision tree has F1-score of 99.45% and

false positive rate of 0.47%. Furthermore,

variation of session time has very little

impact on the performance of decision tree

classifier. Among all features, download

rate and request rate have highest

contribution for detection.

The specific contributions of this paper are

as follows:

 A supervised classifier-based detection

system that distinguishes between

APP-DDoS attacks and flash crowds is

proposed. The proposed approach uses

features directly available from server

access logs that can be computed with

small resources. In addition, our

detection model has minimal

computational and memory overhead

during operation which is important

requirement for real time DDoS

detection and defense systems. The

proposed approach does not rely on

establishing accurate legitimate traffic

baseline. It is adaptive to different

APP-DDoS attack and flash crowd

behaviors.

 The commonly used World Cup 98

flash crowd dataset is complemented

by performing APP-DDoS attack on

locally cloned World Cup 98 website.

The combined flash crowd and APP-

DDoS dataset is available on request

for replication and comparison

purposes.

 The detection and computation

performance of the proposed approach

is empirically evaluated. The

contribution of each feature to

Application Layer DDoS Attack Detection in the Presence of Flash Crowd

 Journal of EEA, Vol.38, July 2020 77

distinguish between APP-DDoS

attacks and flash crowds is also

discussed.

The rest of the paper is organized as

follows. Section 2 describes related

research work. The proposed approach is

presented in Section 3. Sections 4 and 5

discuss experiments used to evaluate the

proposed approach and evaluation result,

respectively. In Section 5, the proposed

approach is also compared with state of the

art. Section 6 discusses conclusion and

future work.

Related work

Taxonomy of flash crowds and some

features that help differentiate APP-DDoS

attacks from flash crowds were discussed

in the work of Bhandari et al. [11].

Features such as distribution of requests

among source IP, geographical distribution

of source IP, URL access behavior and

change in rate of request were suggested to

distinguish between flash crowd and APP-

DDoS attack [11]. The authors used World

Cup 98 dataset to model flash crowds and

created APP-DDoS attack using simulation

to investigate the significance of the

suggested features. The result showed that

URL access behavior has more

contribution to distinguish APP-DDoS

attacks from flash crowds. Page popularity

in our work is used to capture URL access

behavior. The authors recommended

combination of network layer and

application layer features for APP-DDoS

detection from flash crowd.

Information obtained from network

packets such as source address, destination

address is used together with packet flow

rate and time interval to distinguish APP-

DDoS attacks from flash crowd [3, 7, 8, 9].

Sahoo et.al [7] exploited generalized

entropy and information distance to

distinguish between APP-DDoS and flash

crowd in software defined networks. Behal

et al. [8] proposed ISP level detection

approach using the aforementioned

information distance metrics. Daneshgadeh

et al. [3] used a combination of machine

learning based, Shannon entropy and

Mahalanobis distance to distinguish

between normal traffic, flash crowd and

APP-DDoS attack. The authors used

similar flash crowd dataset and the same

APP-DDoS attack tool with our work and

obtained a precision of 93% and recall of

100%. Khalf et al. [10] proposed a

software agent-based model using attack

intensity and IP address information to

address the problem of distinguishing

APP-DDoS from flash crowd attack.

Although promising results are obtained in

the information based metrics, All

approaches rely on the assumption that

APP-DDoS attackers use less number of

unique IP addresses compared to

legitimate users. However, considering the

large number of available IOT devices that

can potentially be deployed in this attack,

the attackers can deploy proportional

number of unique IP addresses with

legitimate users. This makes the

aforementioned approaches ineffective in

such scenarios.

In addition to network layer features, there

are some application layer features to

distinguish flash crowds from APP-DDoS

attacks. Yu et al. [14] suggested page

popularity to identify APP-DDoS attack

from flash crowd, while, Xie et al. [15] and

Ye et al. [16] suggested page access

transition to identify APP-DDoS attack

from legitimate flash crowd. In the work of

Yu et al. [14], page access entropy was

suggested by assuming that the entropy of

flash crowd page access is different from

APP-DDoS attack. This approach may not

work when the attacker requests popular

pages by studying the website. Ye et al.

proposed the transition behavior between

web pages for detection of APP-DDoS

attack [16]. Xie et al. modeled spatial and

temporal user access patterns of flash

crowds using hidden Semi-Markov model

to achieve the same goal [15]. Another

approach that uses a combination of

network layer and application layer

features was suggested by Ramamoorthi et

al. [17]. It uses features such as HTTP

Biruk Asmare Muse and Surafel Lemma Abebe

Journal of EEA, Vol.38, July 2020 78

request rate and page viewing time from

application layer and session rate, number

of TCP, UDP and ICMP packets from

network layer. Enhanced support vector

machine with string kernel was used to

model legitimate flash crowd. They

obtained a classification accuracy of

99.32%. Request rate, page popularity and

page access pattern were commonly used

features for detection of APP-DDoS

attacks against normal or flash crowd [11,

14, 17].

Existing approaches that are used to

distinguish APP-DDoS attacks from flash

crowd have three limitations. The first

limitation is that the approaches rely on

one or two features for detection which

impacts the robustness of such detection

systems. This in turn helps attackers to

easily mimic legitimate requests in their

attack. For example, detection systems that

rely on page popularity may fail when the

attacker studies the website to identify

most popular pages and then programs its

zombies to request most popular pages.

Again, if the detection system considers

page access transition for detection, the

attacker may easily program its zombies to

follow a similar access pattern to that of

legitimate users. This shows that using a

combination of the above features will

make the detection system more robust.

The second limitation is that some

approaches rely on network layer

information such as IP address entropy and

packet flow rate. However, it is not

difficult to deploy proportional attack

machines to that of legitimate machines in

flash crowd. The third limitation is that,

most existing approaches require accurate

model of legitimate traffic as a baseline

which is difficult to obtain considering the

variable nature of internet traffic.

To address this gap in state of the art, we

propose a supervised machine learning

based APP-DDoS detection approach that

distinguishes APP-DDoS attacks from

flash crowd using a combination of

features. The features used for the

detection can be obtained from web server

access logs. Hence, minimal extra effort is

required to collect the features. The

proposed detection approach is simple and

computationally efficient enough to be

deployed in real systems. We evaluate our

proposed detection system using World

Cup 98 dataset and simulated APP-DDos

attack dataset. Similar flash crowd and

APP-DDoS attack dataset is used in recent

researches [5]. We further investigate the

relevance of the features for the detection

of APP-DDoS attack against legitimate

flash crowds.

APP-DDoS DETECTION

The proposed APP-DDoS attack detection

system has two stages. The stages are

feature computation from server access log

and detection stage based on the computed

features. The input for feature computation

stage is web server log data. Web server

logs contain information about the requests

made by clients. Server log information

includes the client address, time stamp,

URL of the requested object, reply size and

client browser information. It is difficult to

have accurate attack detection by

considering only the information available

on server logs. Some literatures suggested

additional features that are derived from

basic server log information [1, 2, 4, 5, 6,

18]. We have selected Request rate (RR),

page popularity (PP), request inter-arrival

time (RIA), download rate (DR), and ratio

of successful requests (RSR). The selection

was done by looking into potential

contribution of the feature for detecting

DDoS attack and the computational

requirement of the feature in terms of

memory and processing time. The

justifications for selecting the features are

presented in Table 1.

All features are computed for each unique

client by considering a predefined time

interval called session time. Client is

defined as the source of the request

identified by IP address. Each client has its

own unique IP address. The details of these

features are discussed in Sub-section 3.1.

Application Layer DDoS Attack Detection in the Presence of Flash Crowd

 Journal of EEA, Vol.38, July 2020 79

The input of the detection stage is the

value of features computed in the feature

computation stage. The expected output of

the detection stage is either the client is

legitimate or attack. In the detection stage,

we put a supervised learning classifier to

make a decision.

The mitigation stage could use information

obtained from the detection stage to block

any pending current and future APP-DDoS

requests. The IP address of the attack client

could also be added to a blacklist.

Mitigation stage is not the focus of this

research. Figure 1 shows the stages of the

proposed approach.

Features

Server access log

Web servers register basic information

about each request such as request address,

time stamp, URL, request type, response

code, replay size and user agent

information. Each entry in a web access

log represents one request. One example

entry of apache web server access log is

shown in Figure 2. The URL is relative to

the web server’s home directory. The time

stamp has one second precision.

Feature computation

The features used in the detection of APP-

DDoS attack from flash crowds are

Request rate (RR), page popularity (PP),

download rate (DR), request inter-arrival

time (RIA) and ratio of successful requests

to total requests (RSR). The description

and computation of the features are

provided in the paragraphs below. All

features are computed using a predefined

session time ().

Session time () is a time interval in

which all requests that arrive in that

interval are considered together when

computing features.

Request rate (RR) is defined as the

number of requests that arrive in a session

time divided by session time. RR is

computed for each unique client identified

by its IP address. RR can be derived from

server logs by counting the number of

Table 1: Feature selection reason

Feature Justification of choice

RR Request flooding APP-DDoS attack is characterized by high number of requests per client

whereas the number of requests per client is small for flash crowd. RR is selected to help

detect Request flooding attacks from flash crowds.

PP Legitimate users in a flash crowd tend to access popular pages more frequently because

they look for similar news. However, APP-DDoS attacks request different pages randomly

because if they choose few popular pages, they are forced to make many requests per page

compared to normal users. This will make them easy target for request rate-based filters.

The PP value of APP-DDoS attack is lower than PP value of flash crowd.

RIA Normal users take some time to view a requested page before requesting the next object.

APP-DDoS attack is generated by machines that do not need viewing time. So the request

inter-arrival time is smaller for APP-DDoS attacks as compared to with legitimate users in

a flash crowd.

DR When a page is requested to the server, a disk access operation is performed. The disc

access time depends on the size of the requested object. Large size web objects require

higher disk access time. Large size web objects can be selected to conduct asymmetric

APP-DDoS attacks [1]. But normal users do not intentionally request only large size web

objects. This creates a difference in download rate between APP-DDoS and flash crowd.

RSR APP-DDoS attackers may request web objects that do not exist in the server. This makes

the sever to reply with 404 error message. Legitimate users in flash crowd, however, have

very low probability of requesting an object that does not exist in the website. This creates

a difference in RSR between flash crowds and APP-DDoS attack.

Biruk Asmare Muse and Surafel Lemma Abebe

Journal of EEA, Vol.38, July 2020 80

requests served in for each unique client.

Equation 1 is used to compute request rate.

 (1)

where is number of requests and is

the session time.

Page popularity () is defined as the

number of requests of a page or web object

divided by total number of requests of all

pages or web objects in the same website.

A page or web object is any file that is

identified by URL such as web page,

image, audio, video, script, style sheet file

and any other components of a website.

Before using page popularity for detection,

we need to compute average popularity

value of all web objects in a website. To

compute average popularity, we will

consider server log collected during

normal operation of the website. From the

collected server log, the page popularity

value of each web object is computed

using Equation 2.

 (2)

where is page popularity of object ,

 the number of requests of object and

 total number of requests of all objects

in the considered period during normal

operation.

In the detection stage, we will take the

average page popularity value of each web

object requested by the client in a session

time. The average popularity value of each

requested object in the session time () is

summed up using Equation 3

 ∑ (3)

where the number of requests of

object and page popularity of object

 . All requested pages in the window time

are considered in the summation. is

computed for each client.

Download rate () is defined as total

number of bytes of reply of all requested

objects in a session time divided by session

time (). When the requested object is not

found on the server, the reply size is taken

as zero. Equation 4 is used to compute

download rate of each client.

∑

 (4)

Where the replay size in bytes for

request and is session time.

Figure 1: Proposed APP-DDoS attack detection and mitigation

::1 - - [17/Nov/2016:21:02:52 +0600]

"GET /PhpProject1/index.php HTTP/1.1"

200 2109 "-" "Mozilla/5.0 (Windows NT

10.0; WOW64; rv:39.0) Gecko/20100101

Firefox/39.0"

Figure 2: Example web server log entry

Application Layer DDoS Attack Detection in the Presence of Flash Crowd

 Journal of EEA, Vol.38, July 2020 81

Request inter-arrival time () is

defined as the time duration between

current request and previous request. The

inter-arrival time between all requests in a

session time are summed up. Equation 5 is

used to compute request inter-arrival time

of each client in a session time ().

 ∑ (5)

Where is time stamp of request and

 time stamp of the immediate

predecessor request .

Ratio of successful request to total

requests () is defined as the ratio of

requests with a reply code of 00 divided

by total number of requests in session time.

Requests with a reply code of 00 are

considered as successful requests. is

computed for each unique client. Equation

6 is used to compute . The value of

 is between 0 and . A value of 0

means there is no successful request while

a value of means all requests are

successful.

 (6)

Where is the total number of requests

with 200 reply code that occur in session

time () and total number of requests

in the session time ().

Feature scaling

The values of each feature used in the

detection system have different range. For

example, the download rate is usually in

the range of thousands while others are in

the range of decimal fractions. Some

classifiers such as decision tree and

Adaboost does not require all the features

to be in similar scale while Support Vector

Machine requires all inputs to be on the

same range [19].

We applied feature scaling in order to

make the values of all features in a similar

range by transforming feature distribution

to a normal distribution with a mean of

zero and unit standard deviation, we used

Equation 7.

 (7)

Where is the transformed feature value,

 is original feature value, is the mean of

all feature values and is the standard

deviation of all feature values.

Detection

The detection system distinguishes APP-

DDoS from flash crowd using a supervised

learning classifier. The input to the

classifier is an array of five feature values

corresponding to RR, PP, DR, RIA and

RSR respectively. The output of the

classifier is either one or zero. One means

the input feature vector corresponds to

APP-DDoS while zero means the input

feature vector corresponds to flash crowd.

The supervised classifier used for detection

is trained off-line using examples of both

flash crowd and APP-DDoS attack. The

training data is composed of input features

 and corresponding label . The input

feature is a vector of dimension five

with components RR, PP, DR, RIA and

RSR respectively. The output is a binary

value that indicates weather the example

represents DDoS attack or normal. Attack

sessions will have a value of while

normal sessions will have a value of 0.

After the classifier is trained it can be

deployed for detection to separate

legitimate flash crowd from APP-DDoS

attack. The output of the classifier is used

as an input to the mitigation system. The

mitigation system terminates current and

pending requests of an attack client. It then

adds the IP address of the attack client to

blacklist. Any future connection attempts

are also terminated. On the other hand, a

request from a legitimate client is

processed as usual.

EXPERIMENTS

In this section, we discuss evaluation of

our proposed approach. We evaluate our

proposed approach in terms of the

following research questions.

Biruk Asmare Muse and Surafel Lemma Abebe

Journal of EEA, Vol.38, July 2020 82

[RQ1: APP-DDoS detection.] Can we

detect flash crowds from APP-DDoS

attacks using our proposed approach?

This research question helps us to evaluate

our APP-DDoS detection system. More

specifically, it deals with evaluation of our

candidate classifiers and selecting the best

classifier for our detection system.

[RQ2: Effect of session time.] What is the

effect of session time on APP-DDoS

detection?

In order to answer RQ2, we use the

outperforming classifier from RQ1 to

study the effect of session time on the

classification performance of our detection

system.

[RQ3: Feature contribution.] What is the

contribution of each feature for detection?

In order to answer this research question,

we perform qualitative and quantitative

analysis to identify features that have

higher contribution for detection.

Dataset preparation

In this sub-section, we discuss details of

dataset preparation. We describe how we

prepared datasets from World Cup 98

access log and experimentally generated

APP-DDoS attack access log. Dataset

generation involves data preparation of

flash crowds and APP-DDoS.

World Cup 98 access log

World Cup 98 access log data is used in

this experiment to model legitimate flash

crowds. World Cup 98 dataset [20]

consists of all the requests made to the

1998 World Cup Web site

(www.france98.com) between April 30,

1998 and July 26, 1998. The World Cup

website provided information about France

1998 World Cup during that period.

The website was hosted on multiple

servers at different locations. The website

received large number of requests from all

clients who were interested in the World

Cup game. 1,352,804,107 requests were

received by the website during the

specified period. Although this dataset is

old, the characteristics of flash crowd that

it models, is not different than what we

would have as a flash crowd in these days.

World Cup 98 data set is used as a flash

crowd dataset in this and related recent

researches [3, 8, 11, 12, 15, 21].

The server logs of the World Cup 98

website are provided in a binary format.

The tools required to process the dataset

are also provided [20]. World Cup 98

dataset is divided in to multiple files with

more than one file per day. The number of

files depends on the number of requests on

that particular day. We have chosen day 66

(June 30, 1998) of the dataset to model

flash crowds because it registered

maximum number of requests. From the

day 66 data, we have chosen server logs of

the last three hours of the day. In these

three hours, there was a game between

Argentina and England, which included 30

minutes extra time, causing high number

of requests to the website.

Each entry in the server log files represents

a single request. The recorded information

for each request is timestamp, clientID,

objectID, size, method, status, type and

server.

An example of the log entry is shown in

Figure 3. The request information contains

clientID, time stamp, request type and

URL of the requested object, HTTP

version, response code and reply size

respectively from left to right. The IP

address of the client is substituted by auto-

generated ID number to keep anonymity.

APP-DDoS attack access log

To the best of our knowledge, there is no

dataset available for APP-DDoS attacks.

As a result, we generated APP-DDoS

attack on a locally hosted version of the

World Cup 98 website. The World Cup 98

website (www.france98.com) was hosted

locally on closed environment. We

performed APP-DDoS attack using a

DDoS attack tool, BoNeSi [13]. BoNeSi

can generate ICMP, UDP and HTTP

Application Layer DDoS Attack Detection in the Presence of Flash Crowd

 Journal of EEA, Vol.38, July 2020 83

flooding attacks from pre-defined botnet

size. This tool also accepts URL lists in a

file and requests pages randomly. It also

generates summary of the attack statistics.

The experimental setup used to generate

APP-DDoS attack is as follows. BoNeSi

tool is installed on attack machine and the

cached version of World Cup website

(www.france98.com) is hosted on the

target machine. Apache web server

application was used to host the website.

The attack machine is directly connected to

the server machine using cat-6 cable on its

network card. BoNeSi attack tool is

installed on Ubuntu 16.04 Linux operating

system.

In order to conduct attack using BoNeSi

tool, the response of the server must be

routed back to the attack machine. To

achieve this, the IP address of the default

gateway of the server must be the same as

the IP address of the attack machine.

Request flooding and asymmetric attacks

are included in the DDoS attack. In request

flooding attack, attacker sends application

layer requests such as HTTP GET request

at higher rate than normal. Request

flooding attacks are characterized by high

number of requests per machine [1]. In

asymmetric attacks, attacker uses requests

that require high workload on the server

and by making such multiple requests, the

attacker easily crushes the server [1]. The

request rate in asymmetric attack is usually

very low to avoid detection. Repeated one

shot attack is a special case of asymmetric

attack and hence it is included as part of

asymmetric attack. In repeated one-shot

attack, the attacker sends requests that

require high server workload in multiple

secessions to avoid detection.

Request flooding attack was generated by

sending large number of requests per

source IP. This is achieved by limiting the

maximum number of bots involved in the

attack. BoNeSi provided 50,000 unique

number of IP addresses to be used. In order

to cover attack scenarios of very small and

very large number of bots, 50 bots were

taken for small number of bots and 50,000

were taken for large number of bots.

URL of requested object is randomly

chosen from all web objects in the World

Cup 98 website.

To simulate asymmetric APP-DDoS

attacks, 50,000 bots were deployed. The

total request rate is lowered so that the

number of requests per bot is small. It is

difficult to calculate precise request

workload. We assume that the server load

is proportional to the reply size.

This assumption works for static web

pages whose contents are retrieved from

hard drive. All pages on the World Cup 98

website are static pages. Fifty web objects

with highest reply size are chosen as a

target URL. BoNeSi randomly selects one

URL at a time for the request.

The attack generation lasted a day. About

1GB of access log data was obtained after

conducting the attack for a day.

Combined dataset

We merged World Cup 98 dataset access

log, representing flash crowd, and APP-

DDoS attack access log, representing APP-

DDoS attack, to build our evaluation

dataset. Since all candidate classifiers

require a numerical input data, feature

computation is required to convert access

log dataset to the numerical dataset. As

discussed in Section 3, the detection

system uses five features for classification.

The features are: request rate, page

popularity, download rate, request inter-

arrival time and ratio of successful

requests. All features can be computed

using equations discussed in Sub-Section

3.1 from server access log.

104858 - - [30/Jun/1998:21:41:24 +0000]

"GET /english/images/nav_home_off.gif

HTTP/1.0" 200 828

Figure 3: Example entry of World Cup 98

access log.

Biruk Asmare Muse and Surafel Lemma Abebe

Journal of EEA, Vol.38, July 2020 84

Each web-page of the World Cup 98

website has associated page popularity

value computed using flash crowd access

logs. The page popularity is obtained by

summing the number of requests on Day

66 access logs for each page and dividing

it by total number of requests. Equation 2

is used to compute the page popularity.

Page popularity value of each web object

is between 0 and .

During feature computation, we take the

requested web object popularity value. If a

client requests more than one web object

or more than one request for similar web

object in a session time, we use Equation 3

to compute the total page popularity.

A feature computation code is

implemented using C++ language. The

input to this code is server access logs of

both attack and flash crowd. The output of

the program is a CSV file. One line in the

file represents the information of one

client. It contains values of the five

features and the label designating if the

client is attacker (label value 1) or

legitimate flash crowd (label value 0).

For example, the entry [0.35, 0.231039,

1950.65, 15, 1, 0] in the output file is read

as request rate, page popularity, download

rate, request inter-arrival time, ratio of

successful requests to total number of

requests and label respectively.

We have generated dataset for session time

of 20, 40, 60, 120, 180, 240, 300, 360, 420,

480 seconds. Each dataset contains 20,000

entries of which half are flash crowd and

the rest are APP-DDoS entries.

We have done experiments on Scikit-learn

machine learning tool [22]. Scikit-learn

learn is a python machine learning library

that implements machine learning

algorithms and provides API for training

and testing. When training and testing

classifiers, we used 10-fold cross

validation technique.

RESULTS AND DISCUSSION

APP-DDoS detection

The result of RQ1 showed that it is

possible to detect flash crowds from APP-

DDoS attack using our proposed approach.

The core part of our detection system is a

supervised classifier. Although AdaBoost,

random forest and decision tree classifiers

have very close classification performance,

decision tree outperformed all other tested

classifiers considering classification time.

Decision tree has F1-score of 99.45% and

false positive rate of 0.47%.

In order to select a classifier for our

detection system, we have tested GNB

(Gaussian Naive Bayes), DT (Decision

tree), SVML (SVM with linear kernel),

SVMP (SVM with polynomial kernel),

SVMR (SVM with radial basis kernel),

Boost (AdaBoost) and random forest

classifiers. We used the dataset generated

using a session time of 20 seconds to

compare the performance of the classifiers.

Figures 4 and 5 show the F1 and FPR

scores of candidate classifiers on 20

second dataset respectively. GNB classifier

showed the lowest F1 score of 90.97%.

However, the best FPR was obtained by

GNB. When lower F1 score is

accompanied by lower FPR, it implies that

most of the time the classifier guesses the

input as flash crowd.

Figure 4: F1 score of candidate classifiers.

Figure 5: FPR of candidate classifiers.

Application Layer DDoS Attack Detection in the Presence of Flash Crowd

 Journal of EEA, Vol.38, July 2020 85

As it can be seen in Figure 4, DT, Boost

and Forest have F1 score higher than 99%.

Boost has the highest F1 score of 99.541%.

The F1 score of DT and Forest are also

very close. We performed a statistical test

whether the difference among scores of

Forest, Boost and DT are statistically

significant. We took the 10 F1 score

values, obtained during 10-fold cross

validation, of DT, Boost and Forest and

performed analysis of variance (ANOVA)

test. This test is a parametric test that

requires normality check of each variable.

We used the Kolomogorov-Simirnove (K-

S) test of normality. The result shows that

DT, Boost and Forest have a test statistic

value of 0.171, 0.244, and 0.151,

respectively. The corresponding P-values

are 0.882, 0.51 and 0.95, respectively. The

low test statistic value and high P-value (>

0.05) indicates that each distribution is not

significantly different from normal

distribution. ANOVA test shows that the

difference among the three classifiers is

not statistically significant with 95%

confidence. The same is true when we do

ANOVA on FPR score of the three

classifiers. The K-S test of normality of

FPR shows that DT, Boost and Forest have

a test statistic value of 0.17, 0.23, and 0.18,

respectively. The corresponding P-values

are 0.82, 0.6, and 0.81, respectively. Since

all P-values are above 0.05, we can apply

ANOVA test on FPR. The result of the

ANOVA test implies that we can choose

any classifier for our APP-DDoS detection

among DT, Boost and Forest.

To see the effect of kernels on SVM

performance, we have used ANOVA to

test the difference among F1 score of

linear, polynomial and radial basis kernels.

ANOVA test showed that the difference in

F1-score among the three kernels is not

statistically significant with 95%

confidence. The K-S test of normality on

F1-score shows that SVML, SVMP and

SVMR have a test statistic value of 0.143,

0.133 and 0.18 respectively. The

corresponding P-values are 0.97, 0.984 and

0.847 respectively.

Figure 6 shows the classification time of

candidate classifiers. Classification time

measures the time a classifier took to

classify 10,000 examples in milliseconds.

DT was the fastest classifier with 0.37

milliseconds. The classification time of DT

is the smallest because DT mainly

traverses a tree during classification. DT

training has techniques to make the

decision tree depth as small as possible.

Traversing small depth trees requires small

time. GNB is the second fastest with 0.721

milliseconds. The classification algorithm

of GNB is relatively simpler compared to

other classifiers. SVM and Boost took high

classification time. SVM’s require scaling

of feature values which makes

classification time longer compared to DT

and GNB. Even though, Boost does not

require scaling, Boost has to make fifty

iterations to classify one example. This

makes the classification time higher.

The kernel choice had big effect on the

classification time of SVM. The

computational complexity of SVM during

classification is dependent on the

complexity of the kernel. Radial basis

kernel took 891.407 milliseconds while

linear kernel took 69.68 milliseconds.

We have seen that DT, Forest and Boost

showed comparable F1 score and FPR. But

the classification time of DT is much

smaller than Forest and Boost. APP-DDoS

detection system must be computationally

efficient in order not to contribute to the

Figure 6: Classification time of candidate

classifiers. (Note: The training time was not

included in this measurement.)

Biruk Asmare Muse and Surafel Lemma Abebe

Journal of EEA, Vol.38, July 2020 86

already exhausted server resources. DT has

bigger advantage compared to Boost and

Forest when we consider classification

time. That makes DT the recommended

classifier to distinguish between flash

crowd and APP-DDoS attack.

Effects of session time

To investigate effect of session time on the

decision tree classifier detection

performance, we tested decision tree

classifier on data sets generated using 20,

40, 60, 120, 180, 240, 300, 360, 420 and

480 seconds session time. The result

showed that the effect of session time on

the performance of decision tree classifier

is very small. We can choose the smallest

session time of 20 seconds for our

detection system without losing much in

detection accuracy.

Figure 7 shows the effect of session time

on F1 score of decision tree classifier. The

highest F1 score was observed for 120

second session time. The difference

between the highest and lowest F1 score is

0.275 %. This shows that the effect of

session time on the F1 score is very small.

Figure 8 shows the effect of session time

on FPR score of decision tree classifier.

The FPR has even smaller variation among

all session times. The difference of FPR

among all session times is not statistically

significant when we applied ANOVA. The

K-S test of normality on FPR shows that

all session times have test statistic value

less than 0.33 and P-value of test statistics

greater than 0.17. This shows that we can

apply ANOVA test for the session times.

Session time has direct implication on the

response time of the detection system. If

the session time is smaller, then the

detection system can respond quickly.

When we see the difference between F1

score of 120 second, highest F1 score, and

20 second session time, it is only 0.2% and

the FPR difference is 0.14%. As we can

see, there is very little advantage gained by

using 120 second session time compared to

20 second in terms of accuracy.

For the smallest session time, 20 second,

decision tree has F1 score of 99.425% and

FPR of 0.55%. Based on the result

obtained, we suggest using 20 second as a

session time for feature computation in our

detection system.

Feature contribution

The result of RQ3 showed that Request

rate and download rate have higher

contribution for detection among the five

features based on qualitative analysis as

well as experiment.

To investigate the contribution of each

feature for detection, we have made a box

plot for each feature using the 20 second

data set (see Figure 9). Box plots provide

insight on the contribution of each feature

for detection through qualitative analysis.

For easier visualization, we have

normalized each feature value to a mean of

zero and unit variance.

The median difference between APP-

DDoS and flash is approximately 1 unit for

request rate (see Figure 9 (a)). This shows

that request rate contribution is potentially

Figure 7: Effect of session time on F1

score of decision tree classifier.

Figure 8: Effect of session time on the FPR

score of decision tree classifier

Application Layer DDoS Attack Detection in the Presence of Flash Crowd

 Journal of EEA, Vol.38, July 2020 87

higher. The reason for higher feature

contribution is that most of the attack data

is request flooding attack which is

characterized by higher request rate.

The box plot for page popularity in Figure

9 (b) shows that the median of flash and

APP-DDoS is very close and difficult to

separate. This means that using page

popularity only to separate APP-DDoS

attack from flash crowds is difficult.

For the case of download rate in Figure 9

(c), the median difference between APP-

DDoS and flash is approximately 0.8 units.

Due to the asymmetric APP-DDoS attack,

there are many outliers observed on the

APP-DDoS box plot. The median

difference is close to that of request rate.

Figure 9 (d) shows the box plot of request

inter-arrival time (RIA). The difference

between the median of APP-DDoS and

flash was approximately 1.05 unit.

However, there is high overlap between

flash and APP-DDoS boxes. As a result,

the potential contribution of RIA for

detection is relatively low.

Figure 9 (e) shows the highest median

difference between flash and APP-DDoS

for ratio of successful requests (RSR),

which are approximately 1.35 units. The

big median difference occurred because

legitimate users in flash crowds request

pages by following links which increases

the probability of the request being

successful. But APP-DDoS attacks select

pages randomly which reduces the

probability of the request being successful.

This shows that RSR has also higher

contribution for detection.

To practically test the contribution of each

feature, we used random forest classifier.

After training the classifier with 20 second

Figure 9: All figures show box plots of all five features used for detection. All values are

normalized to have a mean of 0 and unit variance. The lower line of box plot represents the

25% or first quartile. The top of the box represents the third quartile. The line inside the box

indicates the median. Values labeled in ’+’ sign are outliers.

Biruk Asmare Muse and Surafel Lemma Abebe

Journal of EEA, Vol.38, July 2020 88

data set, we obtained the feature

importance value and plotted a pi-chart as

shown in the Figure 9 (f).

The result obtained shows that download

rate has the highest contribution of

30.276% and request rate is second with

contribution of 26.995%. This result is in

coherence with the qualitative analysis of

feature importance.

Comparison with literature

To the best of our knowledge, the closest

approach in terms of flash crowd and APP-

DDoS dataset choice is the work of

Daneshgadeh et al. [3]. Their approach

leverages machine learning with

information distance. They obtained a

maximum of 100% recall and 93%

precision which corresponds to F1-score of

96.4%. Our approach has 99.45% F1-score

which is higher than Daneshgadeh et al.’s

approach. They did not evaluate the

computational complexity of their

approach. Behal et al. [8] proposed an

approach based on information theory.

They used World Cup 98 dataset together

with synthetically generated attack data.

They achieved a true positive rate of 95%.

It is not possible to compare their approach

because we used different APP-DDoS

attack dataset.

Threats to validity

a) Internal threats to validity

Threats to internal validity are mainly

caused by variation in instrumentation, and

effect due to uncontrolled variables. The

instrumentation used to measure variables

is computer. We run all experiments on the

same computer to avoid instrumental

variation. The effect of uncontrolled

variables is mainly observed when we

measured the classification time of

classifiers. The classification time may be

affected by external concurrent processes

that run on the same computer at the time

of the experiment. To address this threat,

we have repeated the measurement ten

times and took the average. In addition, we

closed non-vital applications during

experiment.

b) External threats to validity

The proposed approach is evaluated on

specific flash crowd data set and using

only one attack tool. In addition, the flash

crowd data set is old which may not

represent current flash crowds. Those are

major threat to external validity. But our

proposed approach is independent of the

data. We can test our approach on any data

set. We will reevaluate our approach when

recent flash crowd data set is available. In

addition, we can test our approach on any

website without changing our detection

system. The other problem is that we only

found one DDoS attack tool suitable for

our research. But the tool is very flexible

with many configurable parameters. We

tried to approximate the functionality of

other DDoS attack tools by manipulating

the configuration. This makes the attack

tool more representative.

c) Construct threats to validity

The main threats to construct validity

occur during choice of features for

detection and during choice of classifiers.

For example, we evaluated six classifiers

from all supervised classifiers. But the best

classifier may not be among the candidate

classifiers. To minimize threats of

construct validity because of classifier

selection, we selected representative

examples from most commonly used

supervised machine learning algorithms.

Most other supervised classifiers are

derivatives of the candidate classifiers. In

addition, we did not consider deep learning

based classifier as it requires big data for

training and we already have good results

using other supervised classifiers.

The other potential threat to construct

validity is the choice of features. We did

not consider all possible features for

detection. The reason for this is that if we

choose a feature that cannot be computed

from our data set, it is difficult to evaluate

our proposed approach. But we have

Application Layer DDoS Attack Detection in the Presence of Flash Crowd

 Journal of EEA, Vol.38, July 2020 89

obtained very good result using only six

features by systematically choosing

features that have higher contribution for

detection. When we compute we did not

consider requests with 300 response code

(redirect). The reason for this is that we

cannot determine if the redirected requests

are successful or not from our server

access log data. This may introduce some

bias on the results.

d) Conclusion threat to validity

The main threats to conclusion validity are

too small sample size, measurement error

and violation of assumption in test

statistics. We have 20,000 examples for

both flash and APP-DDoS in our data set.

When we observe both APP-DDoS attack

and flash crowd data set, the feature values

are similar or very close to each other. We

believe that our data set sample size is not

small for our problem. Since the

measurement and experiment was done on

computers, the measurement error only

comes from computation errors from

machines. Hence, the measurement error is

negligible. We have used analysis of

variance (ANOVA) as test statistics. The

assumption of ANOVA is that the data

must be normally distributed. In order not

to violate this assumption, we tested our

data for normality using Kolmogorov-

Smirnov test. The result showed that the

data used in the ANOVA test is normally

distributed.

CONCLUSIONS

In this paper, the problem of identifying

application layer DDoS attacks from

legitimate flash crowds is addressed. The

researchers proposed a supervised machine

learning based detection system that uses

request rate, page popularity, download

rate, request inter-arrival time and ratio of

successful requests as features to

distinguish between APP-DDoS attack and

flash crowds.

Six supervised classifiers are evaluated on

our dataset. F1 Score and false positive

rate are used as classification performance

evaluation criteria. Classification time is

also used as computational complexity

evaluation criteria to compare the

classifiers. The results show that it is

possible to identify APP-DDoS attack

from flash crowd with our proposed

approach.

Decision tree (DT) outperformed other

candidate classifiers considering a

combination of F1 score, FPR and

classification time as evaluation criteria.

DT classifier has 99.445% F1 score, 0.47%

FPR and the smallest classification time of

0.37 milliseconds. This shows that DT is a

good candidate for the detection system.

Variation of session time has very small

impact on the performance of decision tree

classifier. The difference between F1

scores when 20 second and 120 second

session times are used is very small. In

addition, the difference between FPR

scores of 20 and 120 seconds session time

for decision tree classifier is not

statistically significant. This implies that

any session time can be chosen with very

small impact on performance of the

detection system.

From the proposed features, download rate

has the highest contribution for detection

followed by request rate and page

popularity.

Future work

The main limitation of the research is the

unavailability of latest data set of flash

crowds. For this research, the World Cup

98 data set is used. The World Cup 98 data

set is the standard application layer flash

crowd data set up to now even though it

was recorded before 19 years. Our

proposed approach should be tested on

latest data set for more concrete and

applicable result. The other limitation was

the unavailability of APP-DDoS data set

which forced us to use DDoS attack

generation tool. Based on the

aforementioned limitation of this research,

the following points are recommended to

be addressed as a future work.

Biruk Asmare Muse and Surafel Lemma Abebe

Journal of EEA, Vol.38, July 2020 90

The features used for training as well as

prediction are computed per session, but

the researchers believe that tracking users

usage history will contribute to a more

robust detection. In the future, this could

be used to address the impact of users

history on the performance of the detection

approach.

The proposed approach should be tested on

a new data set that contains examples of

real flash crowds and APP-DDoS attacks.

We did not find standard criteria to

generate application layer DDoS attack in

simulation. Some standard should be set on

how to generate APP-DDoS attack that

closely resembles real attacks. This can be

done by analyzing patterns of real world

APP-DDoS attacks.

In our work, due to the limitation of our

dataset, we did not consider low rate APP-

DDoS attacks. One way to account for low

rate APP-DDoS attack is to borrow

information from TCP layer about the time

it takes to complete a single request. Low

rate APP-DDoS attack usually take more

time to complete a single request.

Furthermore, those attacks usually send

partial requests so data about request

content may be another clue. One

extension, of our work could be to

combine information from application

layer and TCP layer to effectively handle

low rate APP-DDoS attacks.

REFERENCES

[1] Ranjan, S., Swaminathan, R., Uysal,

M. & Knightly, E. W., DDoS-

Resilient Scheduling to Counter

Application Layer Attacks Under

Imperfect Detection., in INFOCOM,

2006.

[2] Xu, C., Zhao, G., Xie, G. & Yu, S.,

Detection on application layer DDoS

using random walk model, in 2014

IEEE International Conference on

Communications (ICC), 2014.

[3] Daneshgadeh, S., Ahmed, T.,

Kemmerich, T. & Baykal, N.,

Detection of DDoS attacks and flash

events using Shannon Entropy, KOAD

and Mahalanobis Distance, in 22nd

Conference on Innovation in Clouds,

Internet and Networks and Workshops

(ICIN), France, 2019.

[4] Wang, J., Yang, X. & Long, K., A

new relative entropy based app-DDoS

detection method, in Computers and

Communications (ISCC), 2010 IEEE

Symposium on, 2010.

[5] Patil, M. M. & Kulkarni, U. L.,

Mitigating App-DDoS Attacks on Web

Servers, International Journal of

Computer Science and Information

Security 9, 40 (2011).

[6] Yadav, S. & Selvakumar, S.,

Detection of application layer DDoS

attack by modeling user behavior

using logistic regression, in

Reliability, Infocom Technologies and

Optimization (ICRITO)(Trends and

Future Directions), 2015 4th

International Conference on, 2015.

[7] Sahoo, K. S., Tiwary, M. & Sahoo,

B., Detection of high rate DDoS

attack from flash events using

information metrics in software

defined networks, in 10th International

Conference on Communication

Systems and Networks

(COMSNETS), Bengaluru, India,

2018.

[8] Behal, S., Kumar, K. & Sachdeva, M.,

A generalized detection system to

detect distributed denial of service

attacks and flash events for

information theory metrics, Turkish

Journal of Electrical Engineering and

Computer Sciences, 1759-1770

(2018).

[9] Behal, S., Kumar, K. & Sachdeva, M.,

D-Face: An anommaly based

distributed approach for early

detection of DDoS attacks and flash

events, Journal of Network and

Computer Application, 49-63 (2018).

[10] Khalaf, B. A., Mostafa, S. A.,

Application Layer DDoS Attack Detection in the Presence of Flash Crowd

 Journal of EEA, Vol.38, July 2020 91

Mutapha, A. & Abdullah, N., An

adaptive model for detection and

prevention of DDoS and flash crowd

flooding attacks, in International

Symposium on Agent, Multi-Agent

Systems and Robotics (ISAMSR),

Malaysia, 2018.

[11] Bhandari, A., Sangal, A. L. & Kumar,

K., Characterizing flash events and

distributed denial-of-service attacks:

an empirical investigation. Security

and Communication Networks 9,

2222-2239 (2016).

[12] Yu, S., Zhou, W., Jia, W., Guo, S.,

Xiang, Y., & Tang, F., Discriminating

DDoS attacks from flash crowds using

flow correlation coefficient, IEEE

Transactions on Parallel and

Distributed Systems, vol. 23, pp.

1073-1080, 2012.

[13] Markus-Go, BoNeSi - the DDoS

Botnet Simulator, 2016.

https://github.com/Markus-Go/bonesi.

Accessed August 2019.

[14] Yu, J., Li, Z., Chen, H. & Chen, X., A

detection and offense mechanism to

defend against application layer

DDoS attacks, in Networking and

Services, 2007. ICNS. Third

International Conference on, 2007.

[15] Xie, Y. & Yu, S.-Z., Monitoring the

application-layer DDoS attacks for

popular websites. IEEE/ACM

Transactions on networking 17, 15-25

(2009).

[16] Ye, C. & Zheng, K., Detection of

application layer distributed denial of

service, in Computer Science and

Network Technology (ICCSNT),

2011 International Conference on,

2011.

[17] Ramamoorthi, A., Subbulakshmi, T.

& Shalinie, S. M., Real time detection

and classification of DDoS attacks

using enhanced SVM with string

kernels, in Recent Trends in

Information Technology (ICRTIT),

2011 International Conference on,

2011.

[18] Xie, Y. & Yu, S.-Z., A novel model

for detecting application layer DDoS

attacks, in Computer and

Computational Sciences, 2006.

IMSCCS'06. First International Multi-

Symposiums on, 2006.

[19] Graf, A. B. & Borer, S.,

Normalization in support vector

machines, in Pattern Recognition:

23rd DAGM Symposium, Munich,

Germany, September 12-14, 2001.

Proceedings, 2001.

[20] Arlitt, M. & Jin, T., 1998 World Cup

Web Site Access Logs, (1998).

[21] Yu, S., Thapngam, T., Liu, J., Wei, S.

& Zhou, W., Discriminating DDoS

flows from flash crowds using

information distance, in NSS 2009:

Proceedings of the third International

Conference on Network and System

Security, 2009.

[22] Pedregosa, F., Varoquaux, G.,

Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer,

P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot,

M. & Duchesnay, E., Scikit-learn:

Machine Learning in Python, Journal

of Machine Learning Research, vol.

12, pp. 2825-2830, 2011.

