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conversion from analog to digital and digital 
to analog (ADC/DAC), phase shifters, and 
power amplifiers all affect the power 
amplifier's energy usage. Although the 
digital beam forming system provides a high 
data rate, the transceiver system uses the 
same number of antennas as the chains, 
resulting in excessive energy usage. On the 
other hand, a hybrid beamforming system 
utilizes fewer R.F. components and can 
provide equivalent spectral efficiency to a 
digital beamforming system while being 
more energy-efficient, according to [6].  

Although hybrid beam forming is used to 
employ a small number of R.F. chains as the 
solution, one of the unanswered concerns is 
how to reduce some numbers among the 
whole array. Antenna selection has been 
employed as one of the power-saving 
approaches for a system with a vast array of 
R.F. components. The majority of recent 
studies in the literature have focused on 
performance analysis for large MIMO 
uplinks with low-resolution analog-to-digital 
converters. In this regard, [7] studied the 
impact of signal detection strategies on the 
energy efficiency of uplink MIMO systems 
with low-resolution analog-to-digital 
converters.  In m MIMO systems, there have 
been few previous investigations on antenna 
selection. During the last few decades, 
various antenna selection strategies and 
algorithms have been investigated for classic 
MIMO.  

The studies in [8] supported capacity-
oriented selection criteria such as the greedy 
method and convex optimization. In [9], the 
authors introduced an antenna selection 
approach (AS) with a low degree of 
complexity that selects antennas with the 
least amount of constructive user 
interference. The suggested AS approach 
outperforms systems that use a more 
sophisticated channel inversion method 
when the transmitter uses precoders in 

conjunction with a matched filter. The goal 
of the work in [10] was to eliminate the 
destructive fraction of the interference 
caused by the link between the sub streams 
of a modulated Phase Shift Keying (PSK) 
system. Singular value decomposition was 
used to offer a new Euclidean distance-
dependent technique for antenna selection in 
spatial modulation systems that have a lower 
computing complexity than an exhaustive 
search [11]. Furthermore, the Symbol Error 
Rate (SER) approaches a complete search as 
the number of received antennas increases. 
As a result, the authors of [12] noted that, in 
comparison to previous and current research 
trends, there is still a lot of interest in mm 
Wave based massive MIMO antenna 
selection with less complexity, higher 
energy efficiency, and optimal data rates in 
recent years. This paper studies a system 
with transmit antenna selection for massive 
MIMO-enabled BS. 

 The technique is broken down into two 
sections: First, at the cell edge, a whole array 
device's energy efficiency (E.E.) is assessed 
using a fixed power allocation technique that 
assumes the channel is deterministic. In this 
scenario, the initial access condition is used 
to find the optimal number of B.S. antennas 
where the E.E. reaches its maximum. 
Second, as users go from the cell edge to the 
outskirt or center places, the minimum 
Signal to Noise Ratio (SNR) found at the 
cell edge is employed as a threshold value to 
further search for the ideal number. 

 To find is utilized as the total number of 
B.S. antennas. Then, the Free Space (F.S.) 
Path Loss (P.L.) model is employed for each 
mobile terminal, with adaptive power 
allocation based on minimum SNR at the 
cell edge. After determining, the subset of 
antennas with the best channel conditions is 
chosen, and E.E. is evaluated using spatial 
selectivity at mm Wave frequency ranges. 
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into path loss as a function of the 
environment since base station towers are 
tall and inter-site distances for specific 
frequency bands are several kilometers. 
Previous UHF/microwave models employed 
a close-in standard distance of 1 km or 100m 
[12]. The CI 1m reference distance, as 
proposed in [13], is a suitable recommended 
norm that relates the real transmit power or 
PL to a reasonable distance of 1m. 
Standardization to a 1m reference distance 
simplifies dimension and model 
comparisons, provides a consistent 
description for Path Loss Exponent (PLE) 
and allows for quick and straightforward 
route loss estimates without the need for a 
calculator [14]. Using power control 
mechanisms, user terminals nearer to the BS 
are allocated lower power than those on the 
outskirts to control interference and fairness. 
CI path loss model is a generic frequency 
model that explains large-scale path loss at 
all applicable frequencies in a specific 
context. The dynamic range of signals 
perceived by users in a commercial system 
becomes significantly lower than the 
equation for the CI model, which is 
formulated as [ 12] 
 
PL_{CI} .   𝒅𝑩 = 𝑷𝑳 𝑭𝑺  𝒇, 𝟏𝒎 + 𝟏𝟎𝒏𝒍𝒐𝒈𝟏𝟎 𝒅 + 𝝌𝒂

 𝒄𝒊   (1) 

Where𝑛 =   𝐷𝐴 /   𝐷2 , denotes a single 
model criterion, the PLE, with 10n defining 
path loss in dB in terms  large 
distance starting from 1m and (.) represents 
frequency and distance parameters. The free 
space path loss, 𝑃𝐿𝐹𝑆 𝑓, 1 𝑑𝐵  at 1m distance 
from a station and carrier frequency f. 
𝐴 = 𝑃𝐿𝐶𝐼 .  𝑑𝐵 − 𝑃𝐿𝐹𝑆 𝑓, 1𝑚 , 10𝑙𝑜𝑔10𝑑 
denotes a single model criterion, the PLE, 
with 10n defining path loss in dB in terms  
 large distance starting from 1m and (.) 
represents frequency and distance 
parameters. The free space path loss, 
𝑃𝐿 𝐹𝑆 𝑓, 1 𝑑𝐵  at 1m distance from a 
station and   carrier frequency f is given as  

𝑃𝐿𝐹𝑆 𝑓, 1𝑚  𝑑𝐵 = 20𝑙𝑜𝑔10 4π/λ       (2) 

where λ is wavelength of the signal. It's 
worth noting that the CI model includes an 
intrinsic frequency interdependence of path 
loss in the 1m 𝑃𝐿𝐹𝑆  value, and it only has 
one parameter compared to the ABG α, β , 
and γ model where α and γ are coefficients 
showing the dependence 

of path loss on distance and frequency, 
respectively and β is an optimized offset 
value for path loss in dB. ς𝐶𝐼 =   χς𝐶𝐼2 /𝑇 
where T is the number of data points. 

Table 1 shows the frequency ranges to be 
used in CI pathloss model in urban micro for 
street canyon (UMi-SC) and open space 
(UMi-OS) at line of sight (LOS) and non-
line of sight (NLOS) conditions respectively 
[14].  As shown in the table, the CI model 
provides path loss exponent (PLE) of 2.0 
and 1.9 in LOS, which approaches well with 
a free space PLE of 2. 

Table 1:Close-in path loss model parameters  
Scenario Freq. 

(GHz) 
Distance 
(m) 

PL
E/α 

𝛼𝐶𝐼 

UMi-SC 
LOS 

2-73.5 5-121  2.0  2.9 

UMi-SC 
NLOS 

2-73.5  19-272 3.1 8.0 

UMi-OS 
LOS 

2-60 5-88 1.9 4.7 

UMi-OS 
NLOS 

2-73.5 8-235 2.8 8.3 

UMa 
LOS  

2-73.5 58- 930 2.0 4.6 

UMa 
NLOS  

2-73.5 45-1429 2.7 10.0 

Trilateration Based Antenna Selection 

In the selection process, the number of 
antennas to be selected is decided by 
adjusting the sufficient amount of transmit 
power to be radiated through only the 
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selected number of antennas. Trilateration is 
used to find a user's location so that the main 
beam can focus only on the desired location 
to minimize leakage. Due to user mobility, 
the transmit power adaptively changes as user 
position varies as a distance function. In this 
case, considering the minimum SNR at the 
cell edge as a threshold value, the number of 
transmit antennas can be reduced adaptively 
when the user comes closer to the center of 
the BS instead of using all arrays that may 
lead to unnecessary power wastage. In 
contrast, the BS only allocates the power 
proportional to the reduced distance to the 
maximum transmit power allocation 
concerning edge distance. Hence, only a few 
antennas are activated, as stated in (3). Then, 
the antennas with better channel gains are 
selected among the array using factorial 
permutations 𝑀𝐶𝑁 as  

Mo = M∗ ptK
i=1 /K
PT

                                        (3) 

where 𝑝𝑡 is the transmit power adjusted for 
each user based on path loss, 𝑃𝑇  is the total 
transmit power and N= Mo  is the number of 
RF chain components. The selection process 
for the whole system is stated in a sub 
optimal algorithm 1 and 2 below.   

Algorithm 1: Initial access based optimal 
number selection algorithm 

Input: Dmax, M, K, f, γ, 𝑝𝑡 , B, 𝑝𝑎𝑚𝑝  , 𝑝𝑏𝑏  , 
𝑝𝑠𝑦𝑛  , 𝑝𝑑𝑎𝑐 , 𝑝𝑚𝑖𝑥  ,𝑝𝑓𝑖𝑙𝑡  
Output: EE, M*; */ 

 begin 

1    ς = 0, 𝑝 t= 30mW, Dmax= 300m;   

2    for l = 1 : length (M) do 

3    H ← (randn(K, l) + j(randn(K, l))) 
4    ς(l) = log2(real(det(I + (J𝑠𝑒𝑙𝑙 )H Ht)))   
5    ptot(l)← pamp+ (pbb+ psyn) + (l(pdac+ pmix+  

pfilt));  
6    EE ← 𝜍 𝑙 

𝑝𝑡𝑜𝑡  𝑙 
 

7           if l = Mmaxthen 
8           M* ← l (find (EE = = max (EE))) 

In algorithm one, the parameters in each line 
are represented as follows: 

x The outputs are energy efficiency 
and optimal number of antennas at 
cell edge respectively; 

x In line 2, Dmaxis cell edge distance; 
x ς(l)  in line 5 is capacity in each 

iteration; 
x ptot(l) is total power in each iteration; 

Algorithm 2: Number and element selection 
after reduced distance 
Input: dmin γ, 𝑝𝑡  
Output: EE, M o 
begin 

1         re-trilateration: for i∈ k do 
2             rk ← R(ki)                

3           if rk  ≠dminthen 
4            Prmin ← Ptmax/Γ(R) 

5            P r(k) ← ΓrPrmin 

6           M1
0=M  𝑃𝑡/𝐾𝑘

𝑖=1
𝑃𝑇

 

7           M2
0←𝑟𝑜𝑢𝑛𝑑    Γ 𝑟  /𝐾 𝑀

Γ 𝑅  
8              if M1

0≠ M2
0then 

9              gotore-trilateration 
10            M1

0← M2
0 

11                  for γ = 1 : M odo 
12                  Ψ = rand(K; M) + jrand(K, M) 
13                  H = Ψ  

 𝑀0; 
14                         for Mi

0= 1 : M odo 
15                         Hc= [H :; [Mi

0    M − i]]  

                             Φ= det(I + γ ∗Hc∗Ht
c) 

16                         ς(m) = log2(real(Φ)) 
17                          ςmax= max(ς(m)) 
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18                         Mi
0← find(ς = ςmax) 

19                          ς(γ) ← ςmax 
20          EE ← 𝜍 𝛾 

𝑝𝑡𝑜𝑡
 ;   

In algorithm one, the parameters in each line 
are represented as follows: 

x The outputs are minimum distance, 
fixed SNR and total transmit power 
respectively; 

x rkin line 3 is the random distance of a 
user; 

x Γ 𝑅 , Γ 𝑟 in line 8 is path loss in dB 
at cell edge and reduced distance; 

x Prminin line5 is minimum 
receivedpower at the cell edge; 

x P r(k) in line 6 is received power at a 
k user; 

x EE in line 22 energy efficiency with 
selected branches and total power; 

x M1
0 in line 7 is the number of 

optimal antennas at reduced distance; 

Energy Efficiency Evaluation 

With chosen antennas 𝑀𝑜 ,  among M, the 
transceivers corresponding to  𝑀𝑜  are turned 
on while some M -𝑀𝑜  's shut off.  With 
massive MIMO, the number of BS antennas 
(M) is assumed to be always much greater 
than the number of single antenna user 
terminals (𝑀 ≫ 𝐾) and allow 𝑀𝑜   to be 
within the range from K to M. Where 𝑀𝑜 , K 
is the number of antennas to be chosen and 
the total number of user terminals with a 
single antenna respectively. The downlink-
channel model is  

𝑦𝑙 =  ρ𝐾𝐻𝑙
 𝑀𝑜 𝑧𝑙 + 𝑛𝑙 .                         (4)                                        

Where 𝐻𝑙
𝑀𝑜

 is a Kx𝑀𝑜channel matrix on 
carrier 𝑙 and the 𝑀𝑜  subscript indicates that 
antenna selection has been made, i.e., 
𝑀𝑜columns of 𝐻𝑙

𝑀𝑜
  are chosen from the 

complete channel matrix of KxM . 

Dirty Paper Coding Sum Capacity (𝑪 𝑫𝑷𝑪  

The downlink sum-capacity at subcarrier is 
given by [6]: 
𝐶𝐷𝑃𝐶𝑙 =𝑚𝑎𝑥𝑃𝑙   log2 𝑑𝑒𝑡  𝐼 + 𝜌𝐾 𝐻𝑙

 𝑁  𝐻𝑃𝑙𝐻𝑙
 𝑁        (5) 

In (5), 𝑃𝑙  is a diagonal power allocation 
matrix with 𝑃𝑙 ,𝑖  I = 1, 2, ... K on its diagonal. 
And the optimization is also carried out 
according to the total power restriction of 
 𝑃𝑙 ,𝑖

𝐾
𝑖=1 = 1 as in (5). This problem of 

optimization is convex, and can be solved, 
for example, by using the water-filling 
algorithm of sum-power iterative. DPC is 
highly complex to implement in practice. 
However, there are suboptimal linear 
precoding schemes, such as zero-forcing 
(ZF) precoding that is much less complex 
and performs fairly well for massive MIMO 
[15]. 

 Zero Forcing Sum Capacity (𝑪_{𝒁𝑭}) 

The total rate achieved by ZFT is [15] 

𝐶𝑍𝐹,𝑙 = 𝑚𝑎𝑥
𝑄𝑙

 𝑙𝑜𝑔2 1 + ρ𝐾𝑄𝑙 ,𝑖 𝐾
𝑖=1            (6) 

Where 𝑄𝑙 ,𝑖  represents SNRs obtained by the 
various users and the maximization is 
carried out according to the total power 
constraint  

 𝑄𝑙 ,𝑖
𝐾
𝑖=1   𝐻𝑙

 𝑁  𝐻𝑙
 𝑁  

𝐻
 
−1

 = 1            (7) 

In (6) and (7), 𝑄𝑙  is a diagonal matrix with  
𝑄𝑙  i=1, 2, ..., K in its diagonal, and     .  𝑖, 𝑖 
 means the matrices I diagonal. The 

  𝐻𝑙
 𝑁  𝐻𝑙

 𝑁  
𝐻
 
−1

 diagonal elements 
reflect the power penalty of null-out 
intervention.  

An M x M diagonal matrix of 𝜑 with binary 
diagonal elements has been implemented to 
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pick the N columns from the complete 
MIMO matrix 𝐻𝑙 . 

φi =  
1  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑

  0, 𝑂𝑡𝑒𝑟𝑤𝑖𝑠𝑒
     (8)  

indicating whether the 𝑖𝑡   antenna is 
selected, and satisfying  𝑀

𝑖=1 = 𝑁 = 𝑀𝑜 . 
Using Sylvester’s determinant identity, det 
(I+AB) = det (I+BA), the DPC sum capacity 
in (5) can be re-written in terms of 𝜑𝑎𝑠 

𝐶𝐷𝑃𝐶𝑙 =𝑚𝑎𝑥
𝑃𝑙

log2 𝑑𝑒𝑡  𝐼 + ρ𝐾𝑃𝑙𝐻𝑙
 𝑁  𝐻𝑙

 𝑁  𝐻 =
𝑚𝑎𝑥 

𝑃𝑙
𝑙𝑜𝑔2𝑑𝑒𝑡  𝐼 +  ρ𝐾𝑃𝑙𝐻𝑙 𝜑 𝐻𝑙  𝐻 (9) subject 

to  𝑃𝑙 ,𝑖
𝐾
𝑖=1 = 1.  

The optimal 𝜑 (common to all subcarriers) is 
found by maximizing the average DPC 
capacity, 

𝜑𝑜𝑝𝑡 =
𝑚𝑎𝑥

𝜑
   1

𝐿  log2𝐿
𝑙=1 𝑑𝑒𝑡  𝐼 + ρ𝐾𝑃𝑙𝐻𝑙 𝜑  𝐻𝑙  𝐻            (10) 

With the subsequent range of antenna, the 
respective sum-rate of ZF 

𝐶𝑍𝐹,𝑙 =𝑚𝑎𝑥
𝑄𝑙

 𝑙𝑜𝑔2 1 + 𝜌𝐾𝑄𝑙 ,𝑖 𝐾
𝑖=1 (11) 

  Subject to   𝑄𝑙 ,𝑖
𝐾
𝑖=1   𝐻𝑙

 𝑁  𝐻𝑙
 𝑁  𝐻 

−1
 
𝑖 ,𝑖

= 1   (12) 

Despite 𝜑𝑜𝑝𝑡  may not be optimal for ZF, the 
ZF sum-rate indicates the antenna selection 
performance when using a more practical 
precoding scheme than DPC. As discussed 
above, exhaustive search of all possible 
combinations of N antennas will certainly 
give us the optimal 𝜑however, it is 
extremely complex and infeasible for 
massive MIMO. From (11 ,12), it can be 
seen that zeroing the upper and lower matrix 
elements requires additional power 
consumption in ZF however still it is simpler 
in processing compared to DPC which has 
no additional power penalty and complex on 
the other hand.  

Energy Efficiency Evaluation 

The total energy efficiency of the system can 
be evaluated as [15]: 

𝐶 = 𝐾𝐸 [𝑙𝑜𝑔2   1 + 𝜌  𝑔𝑘  
2             (13) 

𝐸𝐸 = 𝐾𝐸  𝑙𝑜𝑔2  1 + 𝜌  𝑔𝑘  
2  /𝑃𝑡𝑜𝑡𝑎𝑙        (14) 

 

Where 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑎𝑚𝑝 + 𝑃𝐶𝑃𝑎𝑛𝑑𝑃𝐶𝑃 =
𝑃𝑏𝑏 + 𝑃𝑠𝑦𝑛 + 𝑀𝑜 ∗  𝑃𝑑𝑎𝑐 + 𝑃𝑚𝑖𝑥 + 𝑃𝑓𝑖𝑙𝑡   
where 𝑃𝐶𝑃  accounts for the circuit power 
consumption. 𝑃𝑎𝑚𝑝 is the amount of the 
power produced by various analog 
components. In 𝑃𝐶𝑃 , baseband signal 
processing (𝑃𝑏𝑏 ), synchronization (𝑃𝑠𝑦𝑛 ) are 
independent of number of BS antennas while 
digital to analogue c onversion power (𝑃𝑑𝑎𝑐 ), 
mixing (𝑃𝑚𝑖𝑥 ) and filtering (𝑃𝑓𝑖𝑙𝑡 ) power 
linearly increase with selected BS antennas. 
Table 2 contains the parameters to be used 
for simulation purpose in evaluation of EE 
according to (14).  

Table 2: Complexity Analysis 
Algorithm 2 Algorithm 1+2 

 𝑛  𝑀
𝑀𝑜    𝑛  𝑀

𝑀𝑜 − l⋆   

 
The table states the combinational 
permutation of the algorithms which we 
compare with that of [16], [17], [18] and 
[19] which accounts for 𝑛  𝑀

𝑀𝑜  where 
𝑛 = 𝑀2 + 2𝑀𝑜≡𝑠𝑜2 + 𝑀𝑜  and l⋆ is the the 
deducted elements due to selection. 
According to [17] and [18], the 
computational complexity due to selection 
process is shown in (16) and (17) 
respectively. 
𝒪1 .  = 16𝑛3 + 𝑛2  24𝑀2 + 40𝑀 + 24 − 24𝑀𝑜2 −
24𝑀𝑜 ,                                                                   (15)                                               
𝒪2 .  = 𝑒 + 20 𝑀2 + 𝑀 − 𝑀𝑜2 − 𝑀𝑜 ,            (16) 
𝒪3 .  = 𝒪1 .  + 𝒪2 .  ,                                        (17) 
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𝒪4 .  = 𝑛 (𝑀𝑜2 𝑀3 𝑀 + 1  (18) 
Where 𝑒 = 𝑛  34𝑀2 + 44𝑀 − 36𝑀𝑜2 −
34𝑀𝑜  and (.) denotes  𝑀, 𝑀𝑜 . In [30] low-
complexity transmit antenna selection 
(LCTAS) was studied and found to have 
complexity level as follows: 
𝒪 30 = 𝒪  𝑀𝑜𝑆𝑜 𝑀

𝑀𝑜  (19) 

where 𝑆𝑜  is the number of symbols for a 
constellation type. 
 
 

Table 3: Simulation parameters for the 
overall work 
Parameter  Value  Description 
Ptx 5mW Transmission power 
pmix 0.033 Mixing 

consumption 
pfilt 0.02 Filtering 

consumption 
pbb 0.03 Base band signal 

processing power 
psyn 0.05 Synchronization 

power 
pdac 0.015 Digital to analogue 

conversion power 
pamp= 
ptx/eta 

eta=0.01 Amplifier power 

fs  1800 
Mhz 

Sub 6Ghz 
frequency 

fm 37 Ghz mmWave band 
 

RESULTS AND DISCUSSIONS 

In figure 1, ergodic capacity of different 
MIMO configurations for iid (independent 
identically distributed) channel has been 
shown. From the figure it can be concluded 
that, the capacity becomes higher for of 
massive MIMO with different number of 
antenna configurations than classical MIMO 
systems however at lower SNR level the 
difference is much less and can be neglected. 
However, increase in the number of BS 
antennas accounts for increase in SNR 

which signifies system’s capacity 
enhancement. In this case, NT represents the 
number of BS antennas, M. 

 

 

Figure 1: Ergodic Capacity for i.i.d. 
Rayleigh fast fading channel in different 
MIMO configurations.  

Figure 2 depicts the effect of randomly 
selected transmit antennas on system energy 
efficiency. The energy efficiency increases with 
the number of transmit antennas (M) first, and after 
an optimal point, it abruptly declines. The increase in 
BS antennas is directly associated with the 
rise in the corresponding radio frequency 
chain components, which accounts for 
enormous power consumption in a system. 
From the figure, the optimal number of 
antennas (M*) also depends on the number 
of user terminals (K). For K=5, 10,15, and 
20, M*=5, 7,8, and 9.  

This turning point is when the system's total 
power consumption exceeds the increase in 
the full rate. Hence, the number of antennas 
to be selected should not exceed this point to 
maintain EE; however, finding the optimal 
point also has its challenge due to processing 
complexity. 
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Figure 2: EE at different users and BS 
antenna settings. 

The correlation between energy efficiency, 
k, and M in a massive MIMO system with 
statistical and instantaneous SNR values is 
depicted in figure 3. The outcome is 
evaluated for cell-edge users in LoS settings 
utilizing algorithm one processes. According 
to the result, while energy efficiency initially 
rises as M increases, it begins to drop at 
some point as M keeps growing. For the 
same k, statistical and instantaneous or fixed 
SNR are compared in this figure. 
Accordingly, fixed SNR outperforms for 
small M and comes up short for large M. It 
has also been proven that EE grows with 
user terminals. The EE values for k=20 are 
obtained from the average value of both 
statistical and fixed SNR values.  

On the other hand, EE presents multiple 
optimal points due to unpredictable channel 
circumstances. Furthermore, depending on 
the number of users and SNR modalities, the 
ideal EE point for each arrangement differs. 

 

Figure 3: EE for statistical and fixed SNR at 
sub 6Ghz. 

In figure 4, the effect of channel variation on 
total power and the optimal number of 
antennas to be selected is shown. When 
statistical channel variation is considered, 
the SNR varies. Therefore both total power 
and M* grow large to combat small scale 
fading by adaptively allocating the desired 
amount of power. With fixed SNR, fewer 
antennas can achieve an optimal level than 
statistical SNR. From the figure, evaluation 
with statistical SNR accounts for total power 
consumption than instantaneous SNR 
assumption, which is 20mW and nearly 
19mW for statistical and fixed SNR, 
respectively. 

 

Figure 4: Optimal number of antennas and 
maximum power for statistical and fixed 
SNR. 
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Figures 5 and 6 present the results according 
to the proposed algorithm by combining the 
three scenarios, and we have compared the 
performance of each at CI and FSPL using 
mmWave and sub 6Ghz frequency ranges. 
The first scenario is finding $M^\star$ from 
the full array at the indoor cell edge, finding 
according to (3), and finally evaluating 
capacityvalues by combinational 
permutation as  𝑀

𝑀𝑜 . At the initial access, we 
assume a deterministic channel, equal power 
allocation among all BS antenna elements 
and the point at which the EE graph starts 
diminishing is evaluated using the reference 
signal. Then the number of antennas at that 
point is used as a baseline for our further 
considerations. Before the energy efficiency 
evaluation process, we make the analysis of 
free space and CI path loss models according 
to their formulations stated in (1) and (2).  

Accordingly, the FS model provides higher 
data rates due to obstruction; however, CI is 
more realistic than FS in practical scenarios. 
Based on this intuition, we have applied an 
antenna selection algorithm for both, and the 
results show that a much smaller number of 
antennas are selected in free space than CI. 
Besides, when CI path loss is applied to 
mmWave and sub 6GHz frequency ranges 
and reached for fixed total system power, CI 
with sub 6GHz is more energy-efficient than 
mmWave. Despite high-frequency signals 
carrying larger data than low-frequency 
signals, as frequency increases, the blockage 
due to different impairments also exhibits 
low wavelength, which negatively affects 
the received signal.  

Low received signal accounts for low data 
rate at the receiver, and thus EE is degraded 
compared to CI. Finally, we have found that 
the FS path loss with the DPC precoder 
changes the graph from logarithmic to 
almost linear and starts an abrupt shift to 
decline after the maximum point. However, 
it is limited to the total value in this case. 

Figure 5 depicts minimum SNR-based 
antenna selection using linear and nonlinear 
precoders and compares with EE at full array 
implementation with no precoders. After 
finding an optimal number of antennas, as 
figure5, it applies (3) to recalculate a new 
optimal point that depends on the users' 
current position or distance and adaptive 
reduction of M instead of transmitting 
power. In this case, the optimal, which was 
found in full array implementation, is used 
as M to re-search the new optimal value (3). 
Despite the reduction in the total rate when 
the number of antennas is reduced, the 
reduction in total power consumption 
compensates for maintaining EE.  Finally, 
applying precoders in general and nonlinear 
DPC, in particular, boosts the total rate of 
the system and EE as well. We have 
evaluated EE as a function of BS antennas at 
different power levels for full array and 
selection implementations. The performance 
of the system has also been assessed with 
and without the nonlinear preceding and 
shown that antenna selection with minimum 
SNR significantly improves the energy 
efficiency with less transmit power and DPC 
precoder.

 

Figure 5: Energy efficiency evaluation as a 
function of number of BS antennas with at 
mmWAve frequency, f=38 GHz M=64. 
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Figure 6: Energy efficiency evaluation as a 
function of number of BS antennas with at 
mmWAve frequency, f=38 GHz M=64. 

The complex nature of the proposed 
selection algorithm is shown in figure 7, and 
it is compared with the works that employ 
comparable strategies. The number of 
iterations of the main and nested loops that 
must occur when selecting the branch with 
the best channel gain among the complete 
array is referred to as complexity in this 
scenario. On the other hand, random 
selection is minor complex, despite having a 
lesser capacity than complex selection, as 
shown in the graph. This is because the 
selection is made regardless of channel gain, 
which is critical in increasing capacity and 
complexity.  

 For random selection, the number of 
iterations to select M antennas is only one as 
it has no combination with the channel 
branches. Our proposed algorithm is also 
compared with [16], [17], and [18], which 
are among the simplest and follow similar 
approaches to the best of our knowledge. 
The complexity order of each is our 
proposed technique and random selection 
according to (17), (18), and (19). We have 
also found that the proposed algorithm is 
more energy-efficient than random at the 
cost of some complexity which is less than 
that of [16] and [19]. Moreover, the energy 
efficiency of the proposed technique has 

been shown to surpass random selection, full 
array utilization, and some other literature, 
as shown in the figure. However, the effect 
and trade-off rate, including EE of the 
literature above, is left as our future work.  

 Therefore, the selection technique meets our 
primary goal of proposing an energy-
efficient system at manageable complexity. 

 
Figure 7: Computational complexity of 
selection algorithms with adaptively selected 
number of elements and M=64. 

CONCLUSIONS 

This work has focused on the problem of 
system energy efficiency due to the massive 
number of antenna elements to be installed 
on a single BS in the upcoming wireless 
communication era. Adaptive antenna 
selection technique has been proposed as a 
novel strategy in resolving a substantial 
amount of power consumption and 
complexity as a result of power-hungry RF 
elements which grow with antenna elements. 
The selection has been made for cell-edge 
users with a full array at fixed power 
allocation and minimum SNR-based 
selection for cell center users. Both cases are 
used to achieve the optimal number of 
antennas at which EE becomes maximum. 
The key idea of the proposed algorithm is to 
minimize the number of RF chains, and 
performance evaluation has been done in 
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several scenarios by applying precoders at 
different frequency ranges.  The numerical 
results show that the proposed antenna 
selection algorithm performs better than full 
utilization of the array while finding some 
computational complexity when applying 
nonlinear precoders to compensate the total 
rate whilst selection gets negative effects. 
Moreover, we have evaluated the complex 
pattern of previous and current works with 
similar techniques. Accordingly, it has been 
shown that the proposed approach is least 
complicated and energy-efficient compared 
to the Knapsack formulation and LCTAS. 
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