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ABSTRACT 
The study evaluates existing numerical 
nonlinear modeling techniques used in 
seismic analysis. Experimentally tested 
RC bridge column specimens have been 
taken as a case study and modeled in 
OpenSees finite element software. The 
study shows that the distributed force-
based (FB) fiber models provide a more 
accurate result in capturing the nonlinear 
behavior of the RC bridge column that 
exhibits strain-hardening behavior. In 
contrast, the distributed displacement-
based (DB) fiber models overestimate the 
ultimate capacity of the RC bridge column 
for sections exhibiting strain-hardening 
behavior. The study shows that for 
nonlinear analysis using distributed 
displacement-based (DB) fiber models, 
members should be divided into several 
elements to capture the inelastic response 
accurately. For the section exhibiting 
strain-softening behavior, both the 
distributed force-based (FB) and 
displacement-based (DB) fiber models are 
affected by localization issues. To 
overcome the localization issues, three-
level of regularizations have been 
compared: 1) Applying regularization 
only to concrete, 2) Applying 
regularization only to steel 3) Applying 
regularization to concrete and steel 
materials. The level of regularizations 
was observed to have a significant effect 
in capturing the softening behavior, such 
as concrete crushing/spalling or rupture 
of reinforcing steel bars. 

Keywords: beam-column fiber models, 
Nonlinear-analysis, Strain-Hardening, 
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1. INTRODUCTION 

The advancement in computing 
technologies and the application of 
performance-based engineering design 
requires accurate and efficient 
computational nonlinear beam-column 
models. Based on their efficiency and 
computational cost, the nonlinear models 
used in the seismic analysis are classified 
into the (a) global model, (b) discrete 
finite element model, and (c) microscopic 
finite element models [1]. The study 
investigates the second class of models 
based on discrete finite element models. 
In discrete finite element models, two 
inelastic beam-column models are 
primarily adopted: (a) lumped plasticity 
and (b) distributed plasticity. The early 
approach to model lumped plasticity is by 
introducing zero-length nonlinear springs 
at both ends of the member. In these 
models, a hysteresis backbone curve is 
required to define the properties of the 
hinge.  

The distributed plasticity models allow 
inelastic deformation to occur anywhere 
along the length of the beam-column 
elements. The axial-moment interaction 
can be captured automatically by 
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integrating sectional force-deformation 
along the length of the element. The most 
common distributed plasticity models 
used in earthquake engineering are 
classical displacement-based and force-
based beam-column elements [1, 2]. For 
the structures, in which failure is 
dominated by flexure, distributed 
plasticity has gained wide acceptance in 
earthquake engineering. However, 
softening or localization issues for such 
models are critical problems [3–5]. 

This paper investigates the localization 
issue with different material 
regularization techniques in distributed 
plasticity and suggests the best way to 
overcome mesh-dependent response. The 
effect of applying partial regularization 
only to concrete, only to steel or full 
regularization to both concrete and steel 
materials for structures exhibiting 
softening behaviour is investigated using 
force-based and displacement-based 
distributed plasticity models. Previous 
researches did not elaborate the 
significance of the application of partial 
localization and the consequence in 
capturing the post peak softening 
behaviour of reinforced concrete section.  

2. REVIEW THE STATE OF ART 

2.1 Fiber Based Distributed Plasticity Beam-
Column Element 

The fiber models are one of the recent 
techniques used to determine the inelastic 
responses of the beam-column elements 
by integrating nonlinear responses over 
the monitored cross-sections, as shown in 
Figure 1. The process can be achieved by 
discretizing the cross-section into a finite 

number of fibers. Each fiber contains 
constitutive laws of steel reinforcement, 
unconfined, and confined concrete 
materials, as shown in Figure 1 a. The 
assumption of the plane sections is taken 
into account by employing an Euler-
Bernoulli beam theory, which ensures that 
the strains are distributed linearly across 
the cross-section [1]. The axial-moment 
interaction can be captured automatically 
by integrating sectional force-deformation 
along the length of the element. 

 

Figure 1 Distributed plasticity fiber-based 
beam-column element. 
In the case of uniaxial bending the section 
stiffness matrix ks can be evaluated 
numerically as follow: 

!! =
1 −! !!
−!! !!! !!!!
!! !!!! !!!

!!"#

!!!

!!!!       (1) 

The section resisting forces s is calculated 
using the numerically integration as 
follow: 

! =
!
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Where i is an integer counting from 1 to 
the number of integration points or 
(fibers) NIPs And wi is the weight of the 
integration scheme at i; Ei is the modulus 
of elasticity assigned to the integration 
point i. 

2.1.1. Formulation of distributed 
displacement-based fiber models (DB)  

The DB (displacement or stiffness-based) 
elements are the first distributed plasticity 
based on the classical stiffness method; 
thus, the models satisfy compatibility and 
equilibrium in an exact and approximate 
form, respectively. The models use a 
displacement interpolation function that 
assumes linear curvature and constant 
axial strain deformation to describe the 
nodal displacements. The element 
deformations are obtained directly from 
the shape function; hence iteration is 
required only at the structural level [1]. 
Figure2 shows that N, M1, and M2 are 
element forces denoted by q, and u, θ1, 
and θ2 are element deformations 
represented by v in the basic system. 

 

Figure2 Basic forces of 2D beam-column element 

!(!) = !(!)!                                      (3) 

Where u(x) is displacements at any point 
along the length of the beam-column 
element and N(x) is a matrix containing 
the shape functions for the axial and 
transverse displacements. 

u1(x)
u2(x)

=
!
! 0 0
0 ! − !!!

! + !!
!! − !!

! +
!!
!!

!
θ1 
θ! 

 (4) 

To ensure that the strains are distributed 
linearly across the cross-section, the first 
and second derivatives of the 
displacement shape functions must give 
constant axial strain and linear curvature, 
respectively, and are expressed as 
follows: 

ε(x)
κ(x) =

!
!x 0

0 !2
!x2

u1(x)
u2(x)

                    (5) 

The behavior of members near their 
ultimate resistance and the beginning of 
strain softening cannot be captured by the 
DB elements; hence multiple elements 
per member are needed to represent the 
inelastic response accurately [2,4,5]. 
Most recently, Pantò et al. [6] have 
introduced a new Smart Displacement 
Based (SDB) beam element to improve 
the accuracy of the standard DB element. 
"Smart" refers to an element's capacity to 
upgrade its displacement field following 
its current inelastic state [6]. According to 
the authors, the new model gives a result 
comparable to the FB models. 
Furthermore, Pantò et al. [7] extended the 
model to a Fibre Smart Displacement 
Based (FSDB) beam element to account 
for the axial force-bending moment 
interaction. A strong equilibrium of the 
axial force along the beam element, 
which is not often achieved by standard 
DB beam elements, is demonstrated to be 
possible with the Fibre Smart 
Displacement Based (FSDB) beam 
element [7]. Since those concepts are new 
and have yet to be incorporated in the 
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most known finite element softwares, this 
study focuses only on the standard DB 
elements. 

2.1.2. Formulation of distributed 
force-based fiber models (FB) 

In the FB (force or flexibility-based) 
approach, the force interpolation 
functions are used as a shape function. 
The force-based method is based on an 
exact equilibrium solution within the 
basic system of a beam-column element. 
Section forces are calculated using 
interpolation within the basic system from 
basic forces, as shown in equation (6): 

!(!) = !(!)!                                       (6) 

Where b(x) is force interpolation 
functions that provide constant and linear 
distribution of axial force and bending 
moment, respectively for a member 
without distributed element loads: 

!(!) =
1        0         0
0 − 1 − !

!
!
!

                         (7) 

The element state determination is more 
complex compared to the displacement-
based fiber element. Element 
deformations in the basic system can be 
written as: 

! = !!(!)!
!  !(!) !" = !!!!!ω!

!!
!!!      (8) 

The virtual force principle is used to 
derive the relationship between element 
deformations in the basic system v and 
sectional deformations e(x). Sectional 
deformation e(x) must be calculated from 

section forces s(x); however, in reality, 
this relation does not exist, but its inverse 
does [8, 9]. As a result, the section 
deformations are obtained by solving the 
nonlinear system of equations. 

2.1.3. Localization issues in 
distributed fiber models 

The term ''localization'' is well established 
in fracture mechanics, and various types 
of research are available regarding this 
topic. Experiment tests of compressive 
strength of different specimen sizes have 
shown that the post-peak stress-strain 
behavior of concrete is size-dependent. 
Jansen and Shah [10] conducted 
compressive tests for specimens with 
different slender lengths, and they found 
that the longer the specimen, the steeper 
the curves become. In computational 
mechanics, studies have shown that 
localization issues affect numerical 
models too; hence, this leads to the non-
objective or mesh-dependent response, 
which results from the concentration of 
strain over a small finite element length or 
a single integration point. Before 
developing and applying force-based 
beam-column elements, localization 
issues have been primarily studied in 
displacement-based elements. Still, there 
are several regularization techniques in 
the literature for this model. Among the 
earliest studies, Bazant et al.[11] correctly 
recognized that the localization issue in 
the displacement-based element is 
sensitive to mesh size and the mean 
tangential bending stiffness. Zeris and 
Mahin [12] were the first to explain that 
softening in FB elements has different 
features from DB approaches. 
Deformations localize over a single 
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displacement-based element and single 
integration section in the DB and FB 
elements, respectively [13]. 

Even though several documented types of 
research on regularization techniques for 
DB are available, the works are more 
recent for FB beam-column elements. 
Coleman and Spacone [3] were the first 
who deeply investigated localization 
issues in FB beam-column model and 
applied the regularization techniques 
based on the constant fracture energy 
criterion to these models, which provides 
an objective response to the global force-
displacement response. For sections 
undergoing softening, the FB element also 
fails to produce consistent and rational 
post-yielding global responses since the 
result is influenced by differences in the 
element mesh and the element's number 
of integration points. If too many 
integration points are employed, the 
element becomes unstable for softening 
sections [3, 5]. 

Coleman and Spacone [3]suggested a 
material regularization technique for FB 
models based on constant fracture energy 
criteria concepts to address mesh-
dependent response. The authors modified 
the concrete model developed by Kent 
and Park [14] as shown in Figure 3.  

The ultimate strain is adjusted at the 
quadrature integration points; then, the 
strain-softening process begins. The 
shaded area is proportional to the energy 
released after the pressure's softening. 
The idea is that the concrete material 
models assigned to distributed-plasticity 
fiber sections are modified to have 
constant dissipated material energy during 

crushing. The following expression is 
proposed to express ε20: 

ε!" = !!"
!.!!!!!!

- !.!!!!!!
+ε!                         (9) 

Where Gfc is the fracture energy of 
concrete in compression, f’c is the 
compressive strength of the concrete, εc is 
peak compressive strain of the concrete, 
Ec is modulus of elasticity, ε20 is 
compressive strain corresponding to 
20%f’c and Lp is length of the plastic 
hinge, which acts as the characteristic 
length to overcome mesh-dependent 
response. 

Figure 3 Kent–Park concrete stress–strain 
model with fracture energy in 
compression as shaded area  

The regularization technique proposed by 
Coleman and Spacone [3]was applied 
only to distributed force-based beam-
column model. Pugh [15] recently 
extended the work to include 
displacement-based fiber models. After 
conducting experimental tests on several 
planar wall specimens, Pugh [15] 
expressed the crushing energy value in the 
specified strength of unconfined and 
confined concrete.  
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Furthermore, he recommended using 
different crushing energy values for the 
force-based and displacement-based fiber 
beam-column models. He suggested the 
following values of unconfined crushing 
energy for the FB model: 

!!" = 2!!!(N/mm)  (FB)                      (10) 

Applying the concrete crushing energies 
developed for the force-based beam-
column element to the displacement-
based element produces an over-
prediction of drift capacity Pugh [15] . 
Therefore, for the DB element, the 
unconfined crushing energy is: 

G!" = 0.56f!!(N/mm)  (DB)                (11) 

The confined concrete crushing energy 
for both FB and DF models can be 
estimated as: 

G!"" = 1.7G!"                                           (12) 

Then Equation 9 can be written for the 
confined concrete properties as: 

ε!"# = !!""
!.!!!!! !!"

- !.!!!!!!!!
+ε!"                    (13) 

Coleman and Spacone [3] recommended 
only applying material regularization 
techniques to the concrete material. 
However, this technique can be valuable 
only for sections subjected to high axial 
load, and failure is only due to concrete 
material crushing. If a member with 
widely spaced stirrups is subjected to high 
axial and cyclic lateral load, the section 
could face softening of concrete and 
localization of reinforcement bar. 

Reinforced concrete members at the 
critical section post-peak behavior of steel 
show strain hardening, whereas concrete 
exhibits strain softening. Even though 
steel shows hardening behavior, the 
section exhibits softening steel response 
and localizes at a critical section to 
confirm compatibility conditions[15,16]. 
Therefore, concrete and steel should be 
regularized because the section softening 
comes from the two fiber materials.

 
Figure 4 Stress-strain response histories for 
steel material [15] 

The hardening energy, Gs for the 
simplified bi-linear steel stress-strain 
illustrated in Figurea can be defined as: 

G! = !
! (ε!,!"#- εy)(f!-f!)L!"!#            (14) 

Where: !!! is the rupture strain, !! is the 
yield strain, !! is the ultimate tensile 
strength and !! is the yield strength. The 
ultimate rupture strain assigned to the 
steel material model in the analysis should 
be updated based on the length associated 
with the critical section or element for 
regularizing the steel material. Using the 
Equation 14 and Figure 4b, the strain at 
ultimate strength, εu, used in defining the 
regularized model can be calculated as: 

εu''=εy+(εu,exp-εy)
Lgage
LIP

                         (15) 
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As the mesh becomes more refined and 
small LIP, the hardening modulus of the 
reinforcing steel decreases, requiring 
larger strains to reach a particular post-
yield stress level Pugh [15]. It should be 
noted that these formulations neglect the 
curved transition between the initial and 
post-yielding hardening slopes specified 
by steel material developed by Menegotto 
and Pinto [17]; nonetheless, this is a 
minor simplification that was proven to 
have minimal impact on numerical 
findings [15]. The Gage length has been 
taken as 0.203 m, as suggested by ASTM 
A370 [15, 16]. After the ultimate strain is 
modified according to the gage length and 
length of the first integration section or 
element length, the post-yield hardening 
modulus must be modified based on the 
computed value for the maximum rupture 
strain of the regularized material [15, 16]. 

3. RESULTS AND DISCUSSION  

3.1 Modelling Strategy  

This section investigates the performance 
of the distributed force-based fiber 
models (FB) and displacement-based fiber 
models (DB) commonly used in 
earthquake engineering. The Open 
System for Earthquake Engineering 
Simulation, commonly known as 
OpenSees [18]finite element program, has 
been used to model a reinforced concrete 
bridge column downloaded from the 
PEER Structural Performance Database 
(2003). Material stress-strain relationships 
that describe the concrete and steel fibers 
should be adequately defined to capture 
the inelastic response of structures 
subjected to axial and lateral loading. To 
accurately simulate the bridge-reinforced 
concrete column specimens, the confined 

and unconfined concrete, denoted as 
Concrete02 in OpenSees, has been 
defined. The concrete Kent-Park model 
[14] shown in Figure 4was adopted to 
describe the stress-strain relation of 
concrete fibers. The monotonic 
compression envelope shown in Figure 
5(a) has an initial parabolic envelope, a 
linear softening envelope, and an ultimate 
stress plateau. The confinement effect 
factor, K, can be determined using the 
formula proposed by Mander et al. [19]. 
For unconfined concrete fibers, the strain 
associated with 80% strength loss, f20u, 
was assumed to be 0.008. The ultimate 
strain capacity of the confined concrete 
can be calculated using Priestley et al. 
[20] expression as follows: 

ε!!" = 0.004+ 1.4 !!!!"!!"!!!
                   (16) 

 
(a) 

 
(b) 

Figure 4  Yassin/Modified Park-Kent (a) 
monotonic (b) Cyclic envelope [15]. 
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As illustrated in Figure 5(b), Yassin 
assigned bilinear unloading and linear 
reloading branches to implement cyclic 
behavior on the monotonic compression 
envelope [15]. These hysteretic rules 
assume that tensile response happens 
immediately after complete compression 
unloading and consider stiffness 
degradation throughout both unloading 
and reloading. It is assumed that cracks 
will close suddenly; this can be seen by 
the quick shift in stiffness that occurs 
when compression is reloaded, as shown 
in Figure 5(b). Both the post-cracking 
softness and tensile strength can be 
controlled [15]. 
Table 1 Properties of specimen A2 tested by 
Kunnath et al. [22]. 
Properties Values 
Concrete strength 29 (MPa) 
Yield stress of stirrup 434 (MPa) 
Yield stress of main bar 448 (MPa) 
Diameter of the cross-section 305 (mm) 
Height of the column 1372 (mm) 
Test configuration Cantilever 
Axial load 200 (kN) 
Diameter of the main bar 9.5 (mm) 
Number of bars 21 
Reinforcement ratio of the 
main bar 

0.0204 

Diameter of stirrup 4 (mm) 
Hoop spacing, Sv 19 (mm) 
Cover to center of hoop bar 14.5 (mm) 
Reinforcement ratio of 
stirrup 

0.94 

Span-to-depth ratio 0.94 
Axial load ratio 0.094 

A steel material, Steel-02, with a bilinear 
steel envelope, has been used to define the 
reinforcement bar. Cyclic reinforcing 
steel behavior is commonly modeled 
using the Menegotto-Pinto-Filippou [21], 
which includes isotropic strain hardening, 
as shown in Figure 5.  

 

This model represents steel behavior as a 
series of curved transitions between 
asymptotes defined by linear elastic and 
strain hardening properties. The curved 
transition allows for the representation of 
the Bauschinger effect. Model input 
parameters allow for control of cyclic 
stiffness deterioration. 

3.2 Evaluation of DB and FB models under 
cyclic loading (Hardening) 

Several researchers have identified that 
localization is not an issue for members 
exhibiting hardening behavior. The 
models are evaluated under members 
exhibiting strain-hardening behavior to 
verify these conclusions. Specimen A2 
tested by Kunnath et al. [22]  has been 
taken as a case study for a strain-
hardening behavior. The axial load, cyclic 
lateral load, and section discretization of 
specimen A2 are indicated in Figure 6. 
The properties of specimen A2 have been 
summarized in Table 1. Table 2 shows the 
material properties used for modeling the 
specimen in OpeenSees finite element 
software. 

 
Figure 5 Menegotto-Pinto-Filippou model [21]. 

Strain-hardening behavior was considered 
because the column is subjected to a 
relatively low axial load of 200 kN 
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(0.09fc′Ac), as shown in Figure 6. 
Furthermore, the hysteresis response 
obtained from the experiment has not 
shown any softening or degradation in 
strength. The materials have been 
discretized into many concrete and steel 
fibers to integrate the uniaxial material 
along the section, as seen in Figure 6. To 
simulate the load applied during the 
experiment in OpenSees, first, a 
downward constant axial force of 200 kN 
is applied vertically through the force 
control loading. Once the gravity analysis 
has been carried out, the cyclic lateral 
load is applied through the displacement 
control. 

Table 2 Material properties in OpenSeesof 
specimen A2 tested by Kunnath et al. [22] 

Unconfined concrete(Concrete02) 
Maximum concrete strength (!!!) 29 Mpa 
Peak strain (!!") 

2·
fcc
Ecc

 

Crushing stress (fc20
' ) 0.2·fc

'  

Crushing strain (!!") 0.008 
Confined concrete(Concrete02) 

Confinement factor (!) 1.62 
compressive strength (!!!) k·fc

'  

Peak strain (!!!") 2 ∙ f!!E!!
 

Crushing stress (!!!!") 0.2 ∙ !!! 
Crushing strain (!!!") Equation 16 

Reinforcement bar (Steel02) 
Yield strength(!!) 448 (mpa) 
Modulus of elasticity (!!) 200000 

(mpa) 
Strain hardening 1% 

For the section exhibiting strain-
hardening behavior, cyclic analysis was 
carried out using the DB and the FB 
beam-column fiber models. Because 
Neuenhofer and Filippou [2] suggest that 
more integration points do not improve 

accuracy in the DB model, in this 
research, the member was divided into 
several elements with two Gauss-
Legendre integration points. However, 
increasing the number of integration 
points for the force-based element has a 
significant impact on the numerical result; 
as a result, a single element of the force-
based model with several integration 
points is used. 

As shown in Figure 7, when mesh 
refinement increases, the cyclic moment-
curvature does not converge into the same 
solution because the DB element 
formulation assumes linear curvature, 
which is valid only for elastic. As seen in 
Figure  8, convergence is achieved fast in 
the global response; however, the ultimate 
curvature still varies significantly in the 
local response (see Figure 7). As shown in  
Figure  8, the DB with one element highly 
overestimates the actual response 
compared to DB with 4 and 10 elements 
per member. The ultimate base shear of 
the experimental result is 73.97 kN. With 
a 56.82% error, the maximum base shear 
utilizing 1 DB element per member is 116 
kN. However, the ultimate base shear is 
75.74 kN (with a 2.33% error) when the 
member was refined to 4 and 10 DB 
elements per member. 

 
Figure 6 Simulation of axial load, cyclic lateral 
load and section discretization of the specimen A2 
tested by Kunnath et al. [22]. 
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Analysis using the FB fiber models shows 
that the cyclic moment-curvature 
converges into a unique solution for 
strain-hardening behavior with increased 
integration points, as shown in Figure 9. 
The FB models accurately capture the 
hysteresis force-deformation shape using 
only one element per member with few 
integration points, as shown in Figure 10. 
The FB captured the hysteresis curve of 
force-deformation response better than the 
displacement-based model. The ultimate 
base shear obtained using the FB element 
is 74.08 kN (with a 0.14% error), which is 
almost the same as the experimental 
value. The reason is that the FB model 
satisfies equilibrium in an exact sense, 
whereas the DB is average. 

 

Figure 7 Hardening cyclic moment-
curvature using DB (Specimen A2) 

 
Figure  8 Hardening hysteresis response using DB 
(Specimen A2). 

 
Figure 9 Hardening cyclic moment-curvature 
using FB (Specimen A2).

Figure 10 Hardening hysteresis response using FB 
(Specimen A2) 

3.3  Evaluation of DB and DF models under 
monotonic loading (Softening) 

Reinforced concrete columns that exhibit 
strain-softening behavior, specimen No. 3 
in the tests by Wong et al. [23], and 
specimen FL3 tested by Kowalsky et al.  
[24], have been taken as the case study to 
show the effect of softening behavior on 
the performance of the distributed-based 
fiber models. Specimen No. 3 and 
specimen FL3 are subjected to a high 
axial load of 1813 kN and 1780 kN, 
respectively. For specimen No 3, the 
experimental test showed significant 
concrete spalling and longitudinal bar 
buckling at a drift of 1.21% (9.7 mm) and 
3.23% (25.9 mm), respectively. For the 
specimen FL3, the experimental test showed 
significant concrete spalling and longitudinal 
bar buckling at a drift of 2.79 % (102 mm) 
and 9.3 % (340 mm), respectively.  
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For the push-over analysis, the loading 
method is carried out initially by applying 
a constant downward axial load through 
the force control loading. Then an 
increasing lateral monotonic load is 
applied through the displacement control. 
The Axial load, monotonic lateral load, 
and section discretization of specimen No. 
3 are indicated in Figure 11. The actual 
properties of specimens No. 3 and FL3 
have been summarized in Table 3. 

Table 3 Actual Properties of 
specimen No. 3 [23] and specimen 
FL3[24]. 
Properties Specimen 

No. 3 
Specimen 
FL3 

Concrete strength 37 (MPa) 38.6 
(MPa) 

Yield stress of stirrup 300 (MPa) 445 (MPa) 

Yield stress of main 
bar 

475 (MPa)  477 (MPa)  

Diameter of the cross-
section 

400 (mm) 457 (mm) 

Height of the column 800 (mm)  3,656 
(mm)  

Test configuration Cantilever Cantilever 

Axial load 1813 (kN) 1,780 (kN) 

Diameter of the main 
bar 

16 (mm) 15.9 (mm) 

Number of bars 20 30 

Reinforcement ratio of 
the main bar 

0.032 0.0362 

Diameter of stirrup 10 (mm) 9.5 (mm) 

Hoop spacing, Sv 60 (mm) 76 (mm) 

Cover to center of 
hoop bar 

20 (mm) 30.2 (mm) 

Reinforcement ratio of  
stirrup 

1.42 0.92 

Span-to-depth ratio 2 8 

Axial load ratio 0.39 0.281 

 

 

A reinforced concrete column that 
exhibits strain-softening behavior was 
analyzed using FB and DB numerical 
models.  

Figure 12-Figure 15 show the monotonic 
response of the member analyzed using 
the FB and DB models for both 
specimens.  

For the two specimens, the FB and DB 
numerical models showed two types of 
localization: first, linearly softening, 
which is the softening of concrete 
material that comes as the result of the 
crushing and spelling of concrete; second, 
a sudden drop in strength, which comes 
from the localization of the steel material 
(see Figure 13-Figure 16).  

The analysis results have shown that 
mesh-dependent results underestimate the 
ultimate strength and drift capacity of the 
columns.  

The softening rate in the DB model (see 
Figure 15 and Figure 16) is slow 
compared with the FB (see Figure 13 and 
Figure 14). On the other hand, the FB 
model's results began to soften with just 
one element (with 5 Ips), whereas the DB 
model experienced softening problems 
when the member was divided into eight 
or more elements (with 2 Ips). 
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Figure 11 Axial load, monotonic lateral load and 
section discretization of specimenNo. 3. 

 
Figure 12 Monotonic response of specimen No. 3 
using FB without applying material regularization. 
Table 4 Material properties in OpenSees of 
specimen No. 3 [23] and specimen FL3 [24]. 
 Specimen No. 

3 
Specim
en FL3 

Unconfined concrete (Concrete02) 
Maximum concrete 
strength (!!!) 

37 MPa 38.6 
MPa 

Peak strain (!!") 
2·
fcc
Ecc

 2·
fcc
Ecc

 

Crushing stress (fc20
' ) 0.2·fc

'  0.2·fc
'  

Crushing strain (!!") 0.008 0.008 
Confined concrete (Concrete02) 

Confinement factor (!) 1.348 1.32 
compressive strength 
(!!!) 

k·fc
'  k·fc

'  

Peak strain (!!!") 2 ∙ f!!E!!
 2 ∙ f!!E!!

 

Crushing stress (!!!!") 0.2 ∙ !!! 0.2 ∙ !!! 
Crushing strain (!!!") Equation 16 Equatio

n 16 
Reinforcement bar (Steel02) 

Yield strength(!!) 475 (MPa) 477 
(MPa) 

Modulus of elasticity 
(!!) 

200000 (MPa) 200000 
(MPa) 

Strain hardening 1% 1% 

Figure 13 Monotonic response of specimenFL3 
using FB without applying material regularization. 

 
Figure 14 Monotonic response of specimen No. 3 
using DB without applying material regularization.

Figure 15 Monotonic response of specimen FL3 
using DB without applying material regularization. 

3.4 Investigation of partial and full material 
regularization in FB Model 

Despite the fact that certain studies have 
suggested regularization be used for both 
steel and concrete materials, there hasn't 
been much discussion on the effect of the 
partial regularization techniques This 
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section briefly discusses partial and 
complete material regularization 
techniques for fiber beam-column 
elements. Coleman and Spacone [3] 
recommended material regularization 
only for the concrete section that fails due 
to concrete crushing. Later on, Pugh 
suggested including regularization for 
steel material [15]. The ultimate strain 
was modified using Equation 13 to 
regularize concrete material. Adjusted 
fracture strain for steel material calculated 
according to Equation 15. The gauge 
length was assumed to be 203 mm, as 
recommended by ASTM A370m, and the 
maximum strain was taken as 0.09. In 
OpenSees, MinMax criteria have been 
considered for the steel, which enforces 
the stiffness and strength of the steel 
fibers to become zero when the 
compressive strain is reached. The 
estimated properties of the regularized 
material for FB and DB are summarized 
in Table 5 and Table 6. This paper does 
not present softening issues and 
regularization techniques at the local 
level.  

Table 5 Regularized strains of the unconfined and 
confined concrete, steel ultimate rupture strain and 
strain hardening of specimen No. 3for FB and DB 
models. 

Force-based model (FB) 
No of 

Ips LIP εc20 εcc20 ε'' bs 

3 133.3 0.027 0.034 0.136 0.006 
7 40.0 0.085 0.109 0.447 0.002 
9 19.0 0.177 0.227 0.936 0.001 

Displacement-based model (DB) 
No of 

Elements LIP εc20 εcc20 ε'' bs 

4 100 0.006 0.009 0.180 0.004 
8 50 0.016 0.020 0.358 0.002 
16 25 0.034 0.044 0.714 0.001 

Table 6 Regularized strains of the unconfined and 
confined concrete, steel ultimate rupture strain and 
strain hardening of FL3 for FB and DB model. 

Force-based model (FB) 
No of 

Ips LIP εc20 εcc20 ε'' bs 

3 609.3 0.0071 0.0089 0.0316 0.0517 
7 87. 0.0399 0.0511 0.2067 0.0074 
9 50.7 0.0672 0.0864 0.3527 0.0043 

Displacement-based model (DB) 
No of 

Elements LIP εc20 εcc20 ε'' bs 

8 229 0.006 0.007 0.080 0.012 
16 114.2 0.010 0.012 0.158 0.006 
32 57.1 0.018 0.023 0.3141 0.003 

 
Figure 16  Monotonic response of specimen 
No. 3 using FB after applying material 
regularization only for concrete material. 

Applying material regularization only for 

concrete failed to address the mesh-

dependent response, as shown in  

Figure 16 and Figure 17. The ultimate 
drift capacity for FB with 3, 5, and 7 IPs 
is different. Specimen No 3 and FL3 
showed the onset of a significant concrete 
spalling at a drift of 1.21% (9.7 mm) and 
2.79 % (102 mm), respectively; therefore, 
regularizing only the concrete material 
tackles localization issues up to those drift 
levels. Furthermore, applying material 
regularization only to steel material failed 
to tackle the mesh-dependent response, as 
shown in Figure 18 and Figure19. 
However, this partial regularization 
successfully tackled the localization or 
sudden drop of strength (localization of 
steel) observed in the non-regularized 
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response (Figure 13-Figure 16). 

Figure 17 Monotonic response of specimen FL3 
using FB after applying material regularization 
only for concrete material. 

 
Figure 18 Monotonic response of specimen No. 3 
using FB after applying material regularization 
only for steel material. 

The most recent way is based on 
regularizing steel and concrete materials 
for fiber beam-column models. As shown 
in Figure 20 and Figure21, the response 
using FB elements is objective for all 
integration points. Furthermore, the 
ultimate strength of the specimen No 3 
obtained from the experiment is 578 kN, 
whereas the estimated base shear using 
non-regularized FB with 7 IPs was 465 
kN, which has a 19.31% error. When 
regularization was applied for both 
materials, the ultimate strength was 508 
kN, with a 12.56% error (see Figure 20). 

For the second specimen, FL3, the 
ultimate strength obtained from the 
experiment was 167.3 kN, whereas the 

estimated base shear using non-
regularized FB with 7 IPs was 154.15 kN, 
which has a 7.86 % error. When both 
materials' regularization has been applied, 
the ultimate strength becomes 168.33 kN, 
with a 0.61 % error (see Figure21). From 
the above results, it is seen that the 
localization issue underestimates the 
maximum strength of the member 
subjected to high axial load.  

As illustrated in Figure22 and Figure 23, 
the DB element with regularized steel and 
concrete material produced an objective 
response for all types of mesh refinement. 
For column No 3, the estimated base 
shear using non-regularized DB with 16 
elements is 472.612 kN, which is an 18.3 
% error, whereas the ultimate strength is 
501.83 kN for the fully regularized, with a 
13.2 % error (see Figure22).  

For the second specimen FL3, the 
ultimate strength of the column obtained 
from the experiment is 167.3 kN, whereas 
the estimated based share using non-
regularized DB with 16 elements is 155.8 
kN, which has a 6.83 % error. For the 
fully regularized, the ultimate strength is 
164.05 kN, which has a 1.94 % error (see 
Figure 23). 

Figure19 Monotonic response of specimen FL3 
using FB after applying material regularization 
only for steel material. 
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Figure 20 Monotonic response of specimen No. 3 
using FB after applying material regularization for 
both concrete and steel materials. 

Figure21 Monotonic response of specimenFL3 
using FB after applying material regularization for 
both concrete and steel materials. 

 
Figure22 Monotonic response of specimen No. 3 
using DB after applying material regularization for 
both concrete and steel materials. 

 
Figure 23 Monotonic response of specimen FL3 
using DB after applying material regularization for 
both concrete and steel materials. 

4. CONCLUSIONS 

The research study offers the following 
results based on the experimentally tested 
cantilever columns for the section 
exhibiting strain-softening and strain-
hardening behavior. For strain-hardening 
behavior, the distributed force-based fiber 
models with one element per member 
provide an accurate response. However, 
the distributed displacement-based fiber 
models require several elements per 
member to capture the actual inelastic 
response. Furthermore, in the distributed 
displacement-based fiber models, the rate 
of convergence in the local moment-
curvature response is slow compared to 
the global force-deformation response. 
For sections exhibiting strain-softening 
behavior, both distributed force-based and 
displacement-based fiber models produce 
non-objective responses.  
The study identified two types of 
localization in the fiber models: linear 
softening and sudden loss of strength 
resulting from concrete softening and 
steel localization, respectively. 
Furthermore, if linear softening and 
sudden loss of strength are observed, it is 
recommended to employ regularization of 
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steel and concrete materials to accurately 
capture the non-linear response. 
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