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Unexpected bearing failures may force 
companies to pay for repairing and replacing 
the bearing and adjacent components, which 
may also sustain damage, such as housings 
and shafts. Bearing failures reduce a plant’s 
operating efficiency, increase downtime, 
drive the cost of operations up, and, in the 
worst cases, may injure workers. Unplanned 
maintenance increases the chance of worker 
injury. With workers, 28% more likely to 
have an accident at work when performing 
reactive maintenance over proactive 
maintenance, the impact that premature 
bearing failure can have on worker safety is 
clear [3]. 
In manufacturing plants, optimal 
maintenance strategies are necessary to 
ensure system reliability, reduce cost, avoid 
downtime, and maximize the useful life of a 
component [4]. According to a recent article, 
unplanned downtime caused by poor 
maintenance strategies reduces a plant’s 
overall productive capacity by up to 20 
percent and costs around $50 billion each 
year [5]. 
Many researchers have studied condition 
monitoring (CM) using CNN and Deep 
Neural Networks (DNN). Zhang et al. [6] 
showed the domain adaptability of 
classifying different bearing vibration 
signals using CNN. It is one of the most 
notable deep learning models due to its 
shared weights and ability for local field 
representation [7]. CNN can extract the local 
features of the input data and combine them 
layer by layer to generate high-level 
features. In the field of predictive 
maintenance, CNN has shown dramatic 
capability in extracting useful and robust 
features from monitoring data. For one-
dimension (1D) monitoring signals, Qin et 
al. [8] built an end-to-end 1D-CNN that 
reflected the raw vibration signals to fault 
types. The result showed that the proposed 
model was able to achieve about 99% 
accuracy through hyper parameter tuning. 

Furthermore, the applications of CNN in 
remaining useful life prediction have been 
widely investigated.  
There has been immense success in the 
application of CNN to image and acoustic 
data analysis. In this paper, rather than 
preprocessing vibration signals to de-noise 
or extract features, they investigated the 
usage of CNNs on raw signals; in particular, 
they tested the accuracy of CNNs as 
classifiers on bearing fault data by varying 
the configurations of the CNN from a one-
layer up to a deep three-layer model. They 
also inspected the convolution filters learned 
by the CNN and showed that the filters 
detect unique features of every classification 
category.  
In addition, they studied the effectiveness of 
the various CNN models when the input 
signals were corrupted by noise [9]. Guo et 
al. [10] proposed a deep hierarchical 
architecture of CNN in which original data 
was converted into 2D data to classify 
bearing faults and their sizes. Many of the 
published works of CM with CNN 
approaches show very high accuracy, but 
they were mostly tested on the same dataset. 
Access to datasets is a difficulty while 
investigating machine learning (ML) and 
deep learning (DL) algorithms for fault 
diagnosis because it is difficult and 
expensive to build a realistic mechanical 
fault dataset-producing test-bench. The 
dataset created by Case Western Reserve 
University (CWRU) is the most well-known 
and easily accessible dataset for vibration-
based rolling bearing failure diagnostics and 
has been used as the standard reference in 
numerous papers. In their research, Neupane 
and Seok [11] examined numerous articles 
on deep learning algorithms employing the 
CWRU dataset. Smith and Randall [12] 
studied the complete CWRU dataset and 
provided benchmark recommendations for 
diagnostic methodology. 
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Mohammad et al. [13] proposed a time-
moving segmentation window to segment 
the raw vibration signal, and the segmented 
signals were decomposed up to two levels 
using the discrete wavelet transform (DWT). 
After that, decomposed signals were 
converted into grayscale images to train and 
test the proposed CNN model. To verify the 
performance of the model, the CWRU 
bearing dataset and the MFPT dataset were 
used. The proposed CNN model achieved 
the highest accuracy in terms of 
performance under different load conditions 
as well as in noisy situations with varying 
signal-to-noise ratio values. The 
experimental findings showed that the 
proposed system was effective and 
extremely dependable in detecting bearing 
faults. Junjie et al. [14] used a CNN based 
on improved soft maximum loss (ISM-
CNN).  
The constructed CNN could learn more 
subtle features from the bearing signals, 
thereby improving the accuracy of bearing 
signal classification. Besides, the algorithm 
proposed in the same paper expanded the 
training data set to a certain extent, so that 
the parameters of the ISM-CNN could be 
better fitted. They validated the 
effectiveness of the proposed algorithm on 
the CWRU open dataset and performed 
ablation experiments to prove it. 

The target of this research study was to 
develop a PdM model for ball bearings 
using CNN to predict the health status of 
bearings before the equipment fails by using 
the vibration signal generated from the 
bearings. 

 
2. MATERIALS AND METHODS 
2.1 Test-rig and Dataset 
Figure 1 shows the experimental setup that 
was used. The shaft was connected to a 
motor through a coupling. The motor could 

be operated to a maximum speed of 4100 
rpm. The shaft was connected to the two 
bearing blocks. The bearing block 
immediately adjacent to the motor housed a 
normal (healthy) bearing, which was not 
changed during the entire data acquisition 
process. The second bearing block housed 
bearings with different types of damage 
during the measurement. Bearings were 
fixed into the block by using a retaining 
ring. The bearing blocks had spaces for the 
mounting of accelerometers. 
	

 
Figure1 Experimental test-rig of PT 500.12 

 

An accelerometer was fixed to the bearing 
block in such a way that there would be no 
relative motion between them. The threaded 
section was located on the top and sides of 
the bearing block to measure both the 
horizontal and vertical vibration. The 
accelerometer (B&K Vibro’s AS-020) was 
used to measure the vibration characteristics. 
It was mounted on the bearing block that 
contained the damaged bearings. 

The accessory setup contained six roller 
bearings, on which different faults could be 
detected and explained. The accessory setup 
was mounted on the base plate of the 
machinery diagnostic base system PT 
500.12 roller bearing faults kit.  

A photo-contact tachometer was used to 
measure the speed of the shaft. Six different 
bearings with different fault types were used 
in this test (Figure 2 and 3). After mounting 
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them on the bearing block, vibration patterns 
were recorded for each type. 

The test was done at a shaft speed of 1500 
rpm and a torque of 0.1 Nm. The vibration 
data was recorded at a sampling rate of 15 
kHz for 10 seconds, which resulted in 
150,000 data points. The output of the 
accelerometer was in units of voltage. This 
voltage was then converted into a vibration 
unit known as "G,", which is an acceleration 
unit.  
The conversion was done by using the 
sensitivity of the accelerometer. The 
sensitivity of an accelerometer is defined as 
the ratio of the output voltage to the 
acceleration being measured. After the 
conversion, the dataset was directly fed into 
a CNN architecture without the need for any 
preprocessing. 
 

 
 

 
Figure2 Six types of Bearings (SKF 6004) with 
different health status 

 

The faults were created by introducing 
defects in the bearings. The defects were 
introduced using an electro-discharge 
machining (EDM) by GUNT, the 
manufacturer of the PT 500.12 test-rig 

process to create artificial defects in five 
different parts of the bearings. 

 

 
 ( a)  (b)  (c) 

 
(d)    (e)       (f) 

Figure 3 Types of faults and their locations; a) healthy 
bearing, b) damage on outer race, c) damage on inner race, 
d) damage on roller body, e) damage on roller body, outer 
and inner race, f) heavily worn bearing 

2.2 Proposed CNN Architecture for 
Bearing Fault Classification 

CNN uses the convolution operation in its 
architecture. This operation was used to 
extract features from the input data. The 
convolution of two functions f and g is 
denoted by f * g and defined as the integral 
of the product of the two functions after one 
is reflected about the y-axis and shifted. The 
formula for the convolution operation is 
given by: 

(f*g) (t) = f(z) f(t - z) dz (1) 

where f and g are two functions, t is a 
variable, and z is a dummy variable for 
integration. 
ReLu is a non-linear activation function that 
is used in CNN. It is used to introduce non-
linearity in the output of a neuron and helps 
prevent over fitting. This function can be 
represented as: 

f(x) = Max(0, x)  (2) 
A 1-D CNN with multiple (parallel) inputs 
of the same data was used for this study. 
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Three different kernel sizes were used for 
the same input data. This was achieved by 
using three parallel convolutional layers. 
After the inputs passed through the three 
paths, they were combined and fed into a 
fully connected layer, which was followed 
by another fully connected layer and an 
output layer (Figure 4). 

 
Figure 4 Proposed CNN architecture for 6 classes 

2.2.1 Along upper path 
A 1-D convolutional layer with 64 filters, 
with each filter having a kernel size of (200, 
200), was used. A drop-out layer was used 
to avoid over-fitting, and the drop-out rate 
was set to 50%. This means that during each 
forward pass, 50% of the neurons were 
randomly deactivated. A max-pooling layer 
with a pooling size of 20 was also used. Max 
pooling would reduce the dimensionality of 
the output from the convolutional layers. 
This was important to make the model less 
sensitive to changes and more robust. It was 
equivalent to creating a lower resolution of 
the output while still retaining significant 
information. Networks with ReLU 
activation show better convergence, less 
vanishing, and fewer constant gradient 
problems, which has made them the best 
choice on CNN. 
2.2.2 Along middle path 

1-D convolutional layer with 64 filters, with 
each filter having a kernel size of 100 by 

100, was chosen. A drop-out layer of 50% 
and a ReLU activation function were used. 

2.2.3 Along lower path 
1-D convolutional layer with 64 filters, with 
each filter having a kernel size of (50, 50), 
was used. Similarly, a drop-out layer of 50% 
and a ReLU activation function were used. 
Along each path, different kernel sizes and 
max-pooling sizes were used to help the 
model retain different information along 
each path, thus making it robust to changes 
in the data for which the model was 
expected to predict. The input, after passing 
along the three paths, was flattened and 
concatenated together. The concatenated 
output was fed into a fully connected layer 
with 100 neurons and the ReLU activation 
function. After passing through the fully 
connected layer, the input was fed into the 
output layer to produce the prediction. 

 
2.3 Training the Model 
The input data to the 1D-CNN was 
augmented using a window size of 4500 
data points and a stride of 60 data points. So, 
one input to the architecture was a 4500-by-
1 matrix representing 0.3 seconds of 
vibration duration. This was crucial in 
creating the large number of input data 
points that the model was trained on.  

The model was trained using the Google 
Compute Engine (GPU) through Google 
Collaboratory. The GPU provided by 
Google Colab is the Tesla K80 with 2496 
CUDA cores and 12GB GDDR5 VRAM. 
This compute-optimized engine took no 
more than 45 minutes to train the model, 
unlike typical CPU computers, which would 
have taken more than 6 hours to train. The 
model was trained for a total of 200 epochs. 
The model was normally trained until it no 
longer showed improvement in accuracy. 
For this particular work, the model 
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converged at an epoch of around 200 
(Figure 5). 

 
Figure5 Training accuracy Vs number of epochs 
over time 

 
3. RESULTS AND DISCUSSION 
3.1 Prediction 
Two rounds of data were taken for this test 
in different sessions. During each round of 
data acquisition, the bearings were 
disassembled from the bearing block and 
reassembled in place. The accelerometers 
were unmounted. The model was built using 
the first round of data. In this work, the test 
data on which the model was evaluated was 
entirely from a different session. The 
purpose of doing so was to test the 
robustness of the model on completely 
unseen data. 
The results of the prediction are shown in 
the next sections. 
3.1.1 Ball bearing fault 

The vibration data from the second session 
was given to the model to make a prediction, 
and the result was evaluated. The model was 
not trained on this data, but the class of the 
vibration data was known to be of the ball 
bearing fault type (Figure 6). 

Figure 6 Ball fault Prediction on second round data 

 
Accordingly, the model gave a probability 
of 99.3% that the bearing had a rolling 
element (ball) fault.  

3.1.2 Inner race fault 
A prediction confidence level of 92.7% that 
the bearing had an inner race fault was 
obtained (Figure 7).  

 

Figure 7 Inner race fault Prediction on second round 
data 
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3.1.3 Normal bearing 

 
Figure 8Normal bearing Prediction on second round 
data 

A probability of 99.14% that the bearing 
was normal was obtained (Figure 8).  

3.1.4 Outer race fault 

Figure 9Outer race prediction on second round data 

The model gave a probability of 89.2% that 
the bearing had an outer race fault (Figure 
9). 

3.1.5 Combination of three faults 

 
Figure 10 Combination of three fault prediction 

The model gave a probability of 98% that 
the bearing had three fault combinations 
(Figure 10).  
3.1.6 Severe wear faults 

 

 
Figure 11 Severe wear fault prediction 
 

The model gave a probability of 76.7% that 
the bearing had a severe wear fault (Figure 
11).  
 

3.2 Discussion 
The prediction on the second round of data 
was quite satisfactory for all faults except in 
the case of severe wear. The model 
predicted the fault types with an accuracy of 
above 90% for most of the faults. The fault 
of the outer ring is usually difficult to 
predict because the rings are stationary and 
don’t exhibit peculiar vibration patterns like 
the rest of the components. However, on the 
outer race, an accuracy of 89% was 
obtained, which is a good result. 
For companies, it is usually not that 
important to know what type of fault is 
going to occur. The most important question 
is the health status of the bearing (healthy or 
faulty). The accuracy of the normal bearing 
was above 99%. This is significant for 
increasing the reliability of the model. The 
model is not susceptible to giving false 
positive results. It would have been a bad 
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result if the model had predicted a normal 
bearing status as faulty. This would mean 
that operations are not halted for 
maintenance. 

Fairly good accuracy has been obtained 
without using tiresome preprocessing 
techniques that used to be performed on ML 
techniques. Especially for the normal 
bearing health status, the model predicts 
with an accuracy of 99.9%, indicating its 
dependability in identifying whether a 
bearing is healthy or faulty. The CNN was 
able to construct feature representations that 
assisted in the categorization of "normal" 
and "faulty" data, outperforming previous 
approaches, which relied on feature 
selection, and displaying a higher accuracy 
rate [1-5, 16, 19]. 

Many papers validate their work by setting 
aside 30% of their data, of which 70% is 
allocated for training their model's 
performance [11, 12, 15, 17-19]. This study, 
however, used an entirely different session 
dataset to validate the robustness of the 
model.   
Two fault classes (outer race fault and 
severe wear fault) had the lowest prediction 
accuracy: 89.2% and 76.7%, respectively. 
As pointed out previously, the outer race 
doesn’t rotate as much as the rest of the 
components; therefore, it doesn’t exhibit the 
peculiar vibration pattern associated with it. 
On the other hand, the severe wear fault 
doesn’t have a localized fault, and the 
distribution of the fault over the whole 
surface doesn’t make the bearing vibrate 
every cycle as with other fault types. Hence, 
this prevented the bearing from giving a 
purely distinct pattern. 
The model's accuracy of over 99% in 
predicting the bearing's health status is a 
noteworthy accomplishment with broad 
ramifications for businesses that depend on 
machinery with bearings. Its excellent 
accuracy rate demonstrates the model's 

dependability in determining whether a 
bearing is in good condition or not. 
Outperforming earlier methods that 
depended on feature selection, the CNN was 
able to create feature representations that 
helped classify "normal" and "faulty" data. 
Also, this method does away with the 
necessity for time-consuming preprocessing 
methods that were previously utilized with 
ML techniques. The model's dependability 
in determining whether a bearing is healthy 
or faulty is demonstrated by its accuracy of 
99.9% in predicting normal bearing health 
status. 

The significance of this achievement cannot 
be overstated, as it has implications for 
increasing the reliability of machinery and 
reducing downtime due to unexpected 
failures. Companies can now have greater 
confidence in their machinery and plan 
maintenance schedules more effectively. 
This approach also eliminates the need for 
costly and time-consuming manual 
inspections that are often required to identify 
faulty bearings. The model’s ability to 
predict normal bearing health status with an 
accuracy of 99.9% signifies its dependability 
in identifying whether a bearing is healthy 
or faulty and provides companies with 
greater confidence in their machinery. 

4. CONCLUSIONS 
The CNN framework proposed in this work 
can detect faults by using indicators that 
precede failures and advise maintenance. 
This work demonstrates the potential of 
deep learning methods for fault 
classification and bearing health condition 
monitoring. 

This study has shown that although CNN 
networks were designed for image 
classification, they are sometimes even more 
powerful in classifying vibration patterns 
and tackling the problem of over fitting than 
artificial neural networks (ANNs). 
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The paper has also shown that deep learning 
(1D-CNN) is robust to noise and data 
variation. by showing acceptable levels of 
accuracy without the need for preprocessing 
(cleaning) of the vibration data and by 
learning complex patterns in the signal. 

As the quantity of data available expands 
over time, deeper CNNs may be constructed, 
resulting in higher levels of feature 
representation. The model's accuracy can be 
improved if this is achievable.  
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