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ABSTRACT 

 
Most of the secret key encryption algorithms in use 
today are designed based on either the feistel 
structure or the substitution-permutation structure. 
This paper focuses on data encryption technique 
using multi-scroll chaotic natures and a publicly 
shared image as a key. 
 
 A key is generated from the shared image using a 
full period pseudo random multiplicative LCG. 
Then, multi-scroll chaotic attractors are generated 
using a hysteresis switched, second order linear 
system. The bits of the image of the chaotic 
attractors are mixed with a plaintext to obtain a 
ciphertext. The plaintext can be recovered from the 
ciphertext during the deciphering process only by 
mixing the cipher with a chaos generated using the 
same secret key. As validated by a functional, NIST 
randomness, and Monte Carlo simulation tests, the 
cipher is very much diffused and not prone to 
statistical or selected cipher attacks. 
 
In addition, the performance is measured and 
analyzed using such metrics as encryption time, 
encryption throughput, power consumption and 
compared with such existing encryption algorithms 
as AES and RSA. Then, the performance analysis 
and simulation results verify that the chaotic based 
data encryption algorithm is valid. 
 
 
Key Words: Secret key encryption, shared image, 
hysteresis switched second order system, 
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INTRODUCTION 
 
At present when the Internet provides essential 
communication for tens of millions of people and is 
being increasingly used as a tool for commerce, 
security becomes a tremendously important issue to 
deal with. There are many aspects to security and 
many applications, ranging from secure commerce 
and payments to private communications and 
protecting passwords. The fast expansion of 
computer connectivity necessitates protecting data 
and messages from unauthorized tampering or 
reading.  Even the US courts have ruled that there 

exists no legal expectation of privacy for email. It 
is thus up to the user to ensure that communications 
which are expected to remain private actually do 
so. One of the techniques for ensuring privacy of 
files and communications is Cryptography [1]. 
 
In general, there are three types of cryptographic 
schemes: secret key (or symmetric) cryptography, 
public-key (or asymmetric) cryptography, and hash 
functions. In all cases, the initial unencrypted data 
is referred to as plaintext. It is encrypted into 
cipher-text, which will in turn be decrypted into 
usable plaintext [1-3].  
 
The paper is organized as follows: Firstly, related  
works and progresses in the areas of cryptography 
and chaos generation and applications are 
examined. This is followed by the design, analysis 
and testing of the chaotic encryption algorithm. 
Performance measurements of the design and the 
corresponding results are then presented. Finally 
the conclusions that are drawn from the 
investigation are given.  
 

RELATED WORKS 
 
Pertinent works and progresses in the areas of 
cryptography and chaos are surveyed as follows:  
Data Encryption Standard (DES) is a feistel 
structure, block cipher that was selected by the 
National Bureau of Standards as an official Federal 
Information Processing Standard (FIPS) for the 
United States in 1976 and which had subsequently 
enjoyed widespread use internationally. DES is 
now considered to be insecure for many 
applications chiefly due to the 56-bit key size being 
too small.  In January, 1999, Distributed.net and  
the Electronic Frontier Foundation collaborated to  
publicly  break  a  DES  key  in  22  hours  and  15  
minutes.    Consequently,  DES  has  been 
withdrawn  as  a  standard  by  the National  
Institute  of  Standards  and Technology  and was 
finally superseded by the Advanced Encryption 
Standard (AES) on 26 May 2002 [1, 4 - 9].  
 
Advanced  Encryption  Standard  (AES)  is  an  
encryption  standard  adopted  by  the  US 
Government. It was  announced  by National  
Institute  of  Standards  and Technology  (NIST)  as 
U.S. FIPS PUB 197  (FIPS 197) on November 26, 
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2001  after  a 5-year  standardization process. The 
AES ciphers have been analyzed extensively and 
are now used worldwide, as was the case with its 
predecessor, DES. Until May 2009, the only 
successful published attacks against the full AES 
were side-channel attacks on some specific 
implementations. The input and output for the AES 
algorithm each consist of sequences of 128 bits. 
The Cipher Key for the AES algorithm is a 
sequence of 128, 192 or 256 bits.  Other input, 
output and Cipher Key lengths are not permitted by 
this standard [1, 4, 10, 11]. 
 
RSA  (which  stands  for  Rivest,  Shamir  and  
Adleman  who  first  publicly  described  it)  is  an 
algorithm  for public-key  cryptography.  It is 
believed to be secure given sufficiently long keys 
and the use of up-to-date implementations. As of 
2010, the largest (known) number factored by a 
general-purpose  factoring  algorithm  was  768  
bits  long,  using  a  state-of-the-art  distributed 
implementation. RSA keys are typically 1024–
2048 bits long. Some experts believe that 1024-bit 
keys may  become  breakable  in  the  near  term  
(though  this  is  disputed);  few  see  any way  that 
4096-bit keys could be broken in the foreseeable 
future. Therefore, it is generally presumed that 
RSA is secure if n, called modulus which is the 
product of two large random prime numbers, is 
sufficiently large. If n is 300 bits or shorter, it can 
be factored in a few hours on a personal computer, 
using software already freely available. As the key 
size increases, it becomes more expensive 
computationally [12, 13] 
 
Elliptic  curve  cryptography  (ECC)  is  an  
approach  to  public-key  cryptography  based  on  
the algebraic  structure of elliptic curves over  finite  
fields. An ECC with a key-length greater  than 112-
bit  said  to  be  secure  but  slow  when  used  for  
bulky  data  encryption.  As the key size increases, 
encryption using ECC becomes computationally 
more expensive [12-14]. 
 
 “Chaos" means "a state of disorder", but the 
adjective "chaotic" is defined more precisely in 
chaos theory. For a dynamical system to be 
classified as chaotic, it must be sensitive to initial 
conditions, and topologically mixing. Over  the  
last  two  decades,  chaotic oscillators  have  been  
found  to  be  useful  with  great  potential  in  
many technological  disciplines  such  as  
information  and  computer  sciences,  biomedical  

engineering, power  systems protection, encryption 
and communications, etc. Recently,  there has been  
some increasing  interest  in  exploiting  chaotic  
dynamics  for  real-world  engineering  
applications,  in which much attention has been 
focused on effectively generating chaos from 
simple systems by using simple controllers. Then a 
survey has been made on a number of techniques 
which have been developed for generating chaotic 
attractors and their application in papers [15-19].  
 
The motivation to design and evaluate a chaotic 
based encryption algorithm is, therefore, because 
cryptographic algorithms play an astronomical role 
in information security systems, and in recent 
years, as the importance and the value of 
exchanged data over the Internet or other media 
types have been increasing alarmingly, there has 
been a search for the best solution to offer the 
necessary protection against the data thieves’ 
attacks. On the other side, cryptographic algorithms 
consume a significant amount of such computing 
resources as CPU time, memory, and battery 
power. As a consequence, there has been a great 
interest of designing cryptographic algorithms 
which are secure (or reliable), faster, efficient and 
with no known method of attacks.  
 

DESIGN, ANALYSIS, AND TEST OF THE 
CHAOTIC ENCRYPTION ALGORITHM 

 
 
Design overview 
 
In the abstract, the design of a chaotic based 
crypto-system comprises five major tasks as 
delineated in Fig. 1. The tasks include image 
processing, key generation, generation of chaotic 
attractors, enciphering process, and deciphering 
process. In addition, the design is tested using a 
sample plaintext to verify if it can function as 
designed and required, and it is validated using 
statistical randomness and Monte Carlo simulation 
tests. Eventually, the type of techniques used to 
manage the secret key of the designed chaotic 
crypto-system, and to provide a digital finger print 
of the shared image to check its integrity are 
presented. 
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Figure 1 Chaotic crypto-system 

 
Shared Image 
 
In this crypto-system, the same image, in lieu of the 
secret key itself, is shared amongst all 
communicating (sending and receiving)  parties 
from which the secret key is extracted. It is 
publicly shared by communicating parties just like 
a public key of a public-key encryption, only the 
information required to extract the key from the 
image is communicated secretly.  
 

 
 

Figure 2 Grayscale image. 
 

Keys having lengths less than the image size 
(width*length) are extracted from this shared 
image. The shared image used in this paper and 
from which a secret key is extracted is the one 
portrayed in the Fig. 2. But also it is possible to use 
any other image which is not completely black or 

white as a key! The minimum key length allowed is 
128 bits for it is the minimum secure key length 
used in today’s popular secret key encryption 
algorithms. Above it, it can be of any length as 
long as it is less than the size of the shared image. 
 
The shared image is then processed to make it 
convenient to extract the secret key from its pixel 
values. The image processing here comprises such 
processes as image reading, converting to 
grayscale, and grabbing the pixel values of the 
grayscale image. If the image is RGB, it is first 
converted to a grayscale, as portrayed in Fig. 2, 
using the method convertTogray() from which 
pixel values, ranging from 0 to 255, are grabbed 
into a two dimensional array.  Then, such important 
attributes as width (w), height (h), and pixel values 
(image Pixels) are accessed from the grayscale 
image in Fig. 2 as follows:   
                                          
w = image.getWidth()                                          (1) 
h= image.getHeight()                                           (2)    
 
Image Pixel [w] [h]= readGrayImage                  (3) 
Pixel (grayImage)      
 
 Key Generation 
 
Any secret key of length less than the size of the 
shared image can be extracted from the two 
dimensional pixel values of the shared image stored 
in the 2D array, ImagePixel[w][h], in Eq. 3. 
 
Key. length<= w*h                                               (4) 
 
Where the values of w, and h are obtained in Eqs.1, 
and .2, respectively. 
 
In this paper, the key is extracted from the 2D pixel 
values of the grayscale image using a full period 
pseudo random generator called linear congruential 
generator, LCG, constructed using defined values 
in GF (m) with a period of m-1. Then, the extracted 
key, keyExtract, is converted to binary values, and 
finally substituted using a seven-bit input and five-
bit output S-Boxes to obtain the final enciphering 
and deciphering key, keyFinal. 
 
The pseudo random generator used to extract a key 
from the grayscale image is given in Eq. 5, where 
69,621 is the multiplier, and 231-1 is the modulus. It 
is called multiplicative LCG. 
 
Xn= (69,621Xn-1) mod (231-1)             (5) 
 
The random numbers generated using the above 
algorithm [20] are used as indices of the 2D array 
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of pixels, ImagePixel[][], to extract a key from the 
2D pixel values of the grayscale image as follows, 
where Xo and X1 are seed values. 
 
For i=1:key.length do 
 
    idx1=((69,621Xo) mod (231-1))mod w; 
    idx2=((69,621X1) mod (231-1))mod h 
 
keyExtract[i]=ImgPixel[idx1][idx2]; 
end 
 
Then, the keyBinary[] is divided  into blocks of 
size 49 bit each, in turn, each block is divided into 
seven 7-bit pieces before being processed by the  
substitution boxes. Each of the seven S-boxes 
replaces its seven input bits with five output bits 
according to a non-linear transformation, provided 
in the form of a look up table. The S-boxes 
strengthen the security of the key; i.e substituted 
bits are used instead of the actual bits randomly 
extracted from the shared image thereby increasing 
the efforts of cryptanalysts who try to infer the key 
using brute force analysis or selected cipher attack. 
 
The S-Boxes in this algorithm serve more or less 
the same purpose as the S-Boxes used in DES and 
AES; they are however different from those used in 
DES and AES. Here seven S-Boxes are used. Each 
of them is constructed using defined transformation 
of values in GF (25) comprising 4 unique rows and 
32 columns. Each raw comprises 32 elements 
starting from 0 to 31 in a thoroughly random 
sequence. And the rows are numbered from 0 
through 3. 
 
The input bits are used as addresses in tables of the 
S-boxes. Each group of seven bits will give us an 
address in a different S-box. The first and last bits 
of the 7-bit input indicate row number, and the 
other 5 bits give  the number of columns. Located 
at that address will be a 5-bit number. This 5-bit 
number will replace the original 7 bits. The net 
result is that the seven groups of 7 bits are 
transformed by the seven S-Boxes into seven 
groups of 5 bits for 35 bits total to obtain 
keyFinal[]= S-Boxes(keyExt). 
 
 Generation of Chaotic Attractors 
 
In this paper, the required chaotic attractors are 
generated using a hysteresis switched second order 
linear system. The generation process comprises 
calculation of initial conditions from keys 
generated earlier, and solving the second order 

linear system using the concept of second order 
homogeneous differential equations. 
Hysteresis Switched Second Order Linear 
System 
 
There are many techniques of generating chaos; in 
this paper a system called “Hysteresis Switched 
second order linear system” is used. It is a chaotic 
oscillator triggered only by initial conditions. It has 
no inputs except the initial conditions, Xo and Yo.  
 
Then once triggered by the initial values, it keeps 
on oscillating and generating chaotic attractors for 
a time t, and moves from one scroll to another 
depending on the value of n (number of scrolls ) 
provided due to the feedback hysteresis series as 
depicted in Fig 3. 
 

 
Figure 3 Chaotic oscillator [15].  
 
The mathematical description of the hysteresis 
switched system in Fig 3 is given by:  
 

             ൜
ሶݔ ൌ                                      ݕ

ሶݕ ൌ െݔ ൅ ݕߙ2 ൅ ,ݔሺܪ ݊ሻሶ                        (6) 

 
where Xo, and Yo are the initial conditions,  α is a 
positive constant, x and y are state variables,  H(x, 
n) is a hysteresis series described in Eq. 7 and 8, 
and n is the number of scrolls. 
 
,ݔሺܪ ݊ሻ ൌ ∑ ݄௜ሺݔሻ௡

௜ୀଵ                                            (7) 
and 
 

݄௜ ൌ ൜
ݔ ݎ݋݂    1 ൐ ݅ െ 1
ݔ ݎ݋݂    0 ൏ ݅                                               (8) 

 
Solution of Second Order Linear System 
 
Differentiating both sides of the first Equation of 
system  6 produces the following: 
 

dt

dy

dt

xd


2

2

                                                          (9) 
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Then the differentiated y in Eq. 9 is substituted by 
the equivalent expression given in the second 
equation of system (3.6). Hence, Eq. 3.9 becomes:    
  
ௗమ௫

ௗ௧మ ൌ ௗ௬

ௗ௧
ൌ െݔ ൅ ߙ2 ௗ௫

ௗ௧
൅ ,ݔሺܪ ݊ሻ       (10) 

 
Rearranging Eq. 10, gives out a homogeneous 
equation of the form   
 

 xfcx
dt

dx
b

dt

xad


2

2

         (11) 

 
Where f(x)=0. Therefore Eq. 11 is solved as 

follows, letting mtex  , and ܦ ൌ ௗ௫

ௗ௧
 

 
݁௠௧ሺܽܦଶ ൅ ܦܾ ൅ ܿሻ ൌ 0                                   (12) 
 
Then, if ݁௠௧ is to be a solution, 
 

02  cbmam  
 

a

acbb
m

2

42 
                                   (13) 

 
Using the values of m1 and m2, obtained from  

Eq. 13, the solutions are tmex 1
1   and tmex 2

2  , 

then combining both solutions to obtain the general 
solution  
 

2211 xcxcx   
tmtm ececx 21

21                                           (14) 

 
If the system is to generate chaos, its solution must 
be complex; i.e for a=1, b=2 , and c=1 (obtained 
from Eq.  10,  im  . Then,   

 
    ݉ ൌ ߙ േ ଶ െߙ√ 1 ൌ ߙ ൅  (15)                     ߚ݅

Hence, 21   , obtained by solving  

 
Equation 13.  
 
Euler’s formulae,  
 








sincos

sincos

ie

ie
i

i






                                     (16) 

 

If m1=  i  and m2=  i , then using the 

Euler’s formulae in 16, the solution in 15  
becomes: 
 
ሻݐሺݔ  ൌ ݁ఈ௧ሾݐߚݏ݋ܿܣ ൅  ሿ                         (17)ݐߚ݊݅ݏܤ
 
The solution for the state variable y is therefore 
obtained as follows, 
 
 

    
dt

tBtAed

dt

dx
ty

t  sincos 
    (18) 

 
Solving for y and x in Equation 18, produces  
 
                                             

ሻݐሺݔ ൌ ݁ఈ௧ ቂܺ௢ܿݐߚݏ݋ ൅ ݅ ቀ
௒೚ିఈ௑೚

ఉ
ቁ  ቃݐߚ݊݅ݏ

ሻݐሺݕ ൌ ݁ఈ௧ ቂ ௢ܻܿݐߚݏ݋ ൅ ఈሺ௒೚ିఈ௑೚ሻ

ఉ
     ቃ           (19)ݐߚ݊݅ݏ

                                   
Calculation of Initial Conditions  
 
In this paper, the initial conditions of system 6 are 
calculated using the bit values of the keyFinal 
array, which is the output of the S-Boxes, as 
follows. 
 
    ܺ௢ ൌ ݎܽݒ ൅  ݈ܺܽ݊݅ܨݕ݁݇
     ௢ܻ ൌ ݎܽݒ ൅  (20)                    ܻ݈ܽ݊݅ܨݕ݁݇
                        
 
Where var is a user defined value, kept secret as 
part of the key, keyFinalX and keyFinalY are two 
different keys generated using different seed values 
for the LCG. 
 

 
 

Figure 4 Five-scroll chaotic attractors 
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Figure 4 portrays the 5-scroll chaotic attractors 
generated using the solutions of system 6 given in 
Eq. 19. The chaos is generated using a key of 

length 136 bits, α=0.0049, and 21  
=0.999976. The chaos is sensitive to the α values, 
and  secure range of α values are determined using 
an algorithm that makes use of the monobit test, 
described  later 
 
Enciphering Process 
 
During the enciphering process, the plaintext is 
mixed with the generated chaos using a logical 
bitwise XOR operator as depicted in Fig 5. 
 

 
 

Figure 5 Enciphering process 
 

During chaos processing, three equal sections 
namely upper, middle and lower are cropped from 
the overall balanced chaos shown in Fig 4. and 
converted to grayscales as depicted in Figs 6 (a), 
(b), and (c), and XORed together  to further 
increase the probability of the balance of 1’s and 
0’s by avoiding localized imbalances. Then, the 
combination of the three crops is resized as per the 
size of the input plaintext as portrayed in Fig. 7. 
Through this process, all the security properties 
which include one way encryption, semantic 
security, and indistinguishability are achieved.  
 

     
(a) Upper crop 

 
(b) Middle crop 

 

     
(c) Lower crop 
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(d) Mixed=a XOR b XOR c 
 

Figure 6 Chaos cropping and mixing. 
 

 
 
Figure 7 Resized balanced chaos. 

 
Deciphering Process 
 
The process of deciphering in this chaotic 
algorithm is essentially the same as the enciphering 
process. The rule is as follows: the same key used 
during the enciphering process is used in the 
deciphering process, but the cipher text, in lieu of 
the plaintext, is used as input to the chaotic 
algorithm. The ciphertext, which is the output of 
the enciphering process, is mixed with the 
appropriately sized chaos generated using the same 
key and the XOR operator. 
 
 Design Test  
 
To verify if the designed chaotic algorithm can 
function as required, a sample plaintext was 

enciphered and then deciphered. A plaintext is 
browsed using the GUI depicted in Fig. 8, and is 
enciphered to convert it into a form which is 
unintelligible. Eventually, the ciphertext is 
deciphered to check if the chaotic deciphering 
process can fully recover the clear text (or 
plaintext) back from it. As copied from the text 
areas of the GUI in Fig. 8, portions of the plaintext, 
ciphertext, and decrypted text are respectively 
displayed below verifying that the chaotic 
algorithm works as designed and required. i.e the 
plaintext and recovered (or decrypted text) are the 
same. 
 
Plaintext=How do we protect our most valuable 
assets? 
  
Ciphertext=:"u1:u"0u%':!06!u:'u8:&!u#494790u4&
&0!&ju; 
 
Deciphered text=How do we protect our most 
valuable assets? 
 
What is more,   a number of NIST statistical tests 
and Monte Carlo Simulation test were performed 
on the chaotic sequence to attempt to compare and 
evaluate the sequence to a truly random sequence 
as depicted in Table 1. Then, the results validate 
the algorithm. 
 

 
 
 
Figure 8 Chaotic crypto system 
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Table- 1: Summary of  test results 
 

NIST Test Objective P-value Decision 
Rule

Monobit Proportion of 
1’s and 0’s 

0.9491  
 
                
0.01 

Block 
Frequency 

Proportion of 
1’s and 0’s 

0.9998 

Run Oscillation b/n 
1 and 0 

0.9542 

Spectral Reveal 
periodicities 

0.0695 

Linear 
Complexit
y 

Length of 
LFSR* 

0.8030 

   *LFSR=Linear Feedback Shift Register  
    
Key Exchange 
 
In general, in a secret key encryption, as the 
number of communicating parties increase the 
exchange of the secret key becomes insecure. i.e  n 
users who want to communicate in pairs need n * 
(n - 1)/2 keys [2]. The number of keys needed 
increases at a rate proportional to the square of the 
number of users! So a property of symmetric 
encryption systems is that they require a means of 
key distribution.  
 
In this paper, all the information required for the 
extraction of the key from the publicly shared 
image and other constants is encrypted using a 
public-key RSA, and then sent to the recipient. Let 
INFO=Seeds + n + var + α + HKey + LenMul; 
then, it is sent as follows: 
 

E (KPUB-R, E(KPRIV-S, INFO)) 
 

where E stands for RSA encryption, Kpub=public 
key, Kpriv=private key, R stands  for Receiver, S 
stands for Sender, n is the number of scrolls, and 
LenMul is the number of digits contained in the 
multiplier of the PRNG used for key extraction. 
Besides, an HMAC that serves two purposes 
namely shared image integrity check, and origin 
authentication is generated using keyed SHA-1 as  
HMAC=H (HKey, Shared image). 
 

PERFORMANCE ANALYSIS 
 

In this paper, relevant metrics are identified, 
performance of the chaotic algorithm is measured, 

and eventually, the chaotic encryption algorithm is 
compared with existing one public key, RSA and 
one secret key, AES, encryption algorithms.  
  
Metrics and Performance 
  
In this paper, five pertinent metrics are used to 
evaluate the performance of the chaotic encryption. 
The metrics include encryption/decryption time, 
power consumption, encryption throughput, CPU 
time and cipher size. Then the experiment was 
conducted and performance results were collected 
using a laptop having processor of Intel (R) 
Pentium (R) Dual CPU T2370 @ 1.73GHz, 
1.73GHz, and a RAM of 1GB.    
 
Encryption Time 
 
In most encryption algorithms, the encryption time 
is dependent on the computational complexity of 
the algorithm, key length, and the size of the 
plaintext to be encrypted. Here, in this paper, a 
number of encryption times for various plaintext 
sizes and key length are collected and analyzed as 
follows. The encryption time and text size are 
measured using a timer and bit length reader 
method built as part of the crypto system. 
 
Effect of Key Length on the Encryption Time  
 
Unlike other encryption algorithms, the key length 
does not affect significantly the computation time 
of the chaotic algorithm designed in this paper. 
This is due to the fact that the key is used only to 
calculate the initial conditions of the system used to 
generate chaos. The initial conditions are calculated 
in ways described in Eq. 20. 
 
Effect of Plaintext Size on the Encryption Time  
 
Various data sizes ranging from 7.84 Kb to 500 Kb 
are enciphered, and their respective encryption 
times are collected.  
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Figure 9: Data size versus encryption time 
 
Figure 9 depicts that the enciphering time increases 
as the data size to be enciphered is increased. The 
data size and the enciphering time are linearly 
related. 
 
Encryption Throughput, Xe 

It is the measure of the number of bytes of 
ciphertext completed (enciphered) during an 
observation period (enciphering time). 
Mathematically represented: 
 

 sTimeEncryption

bytesinscompletionofnumber
xe       (21) 

 
 
The Effect of Changing the plaintext size on the 
Encryption Throughput 
 
The graph in Fig. 10 shows that for initially small 
size data the throughput is not affected; rather it 
increases with increase in data size. However, once 
the data size gets large enough, further increase in 
the data size keeps on diminishing the encryption 
throughput. 

 
Figure 10  Encryption throughput verses data sizes 

 
Power Consumption 
 
Such technologies as CPU and memory are 
growing faster, and so is their need for power. 
However, battery technology is increasing at a 
much slower rate, forming a battery gap. Because 
of this, battery capacity plays a major role in the 
usability of devices and algorithms [21]. Hence, it 
is worthwhile to analyze the power consumption of 
the designed chaotic algorithm. 
 
For computation of the energy cost of encryption, 
we use the same techniques as described in [21]. 
We present a basic cost of encryption represented 
by the product of the total number of clock cycles 
taken by the encryption and the average current 
drawn by each CPU clock cycle. The basic 
encryption cost is in unit of ampere-cycle. To 
calculate the total energy cost, we divide the 
ampere-cycles by the clock frequency in 
cycles/second of a processor; we obtain the energy 
cost of encryption in ampere-seconds. Then, we 
multiply the ampere-seconds with the processor’s 
operating voltage, and we obtain the energy cost in 
Joule. That’s, by using the cycles, the operating 
voltage of the CPU, and the average current drawn 
for each cycle, we can calculate the energy 
consumption of cryptographic functions. Then, the 
amount of energy consumed by the chaotic 
algorithm C to achieve its goal (encryption or 
decryption) is given by: 
 
E = V cc*I*T joules                                           (22) 
 
Where for a given hardware Vcc is fixed. The 
encryption time, T, is considered the time that an 
encryption algorithm takes to produce a cipher text 
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from a plaintext, and I is the average current 
consumed per CPU cycle.  
 
In this paper, the experiment was conducted and 
performance results were collected using a laptop 
with Pentium Dual 1.73GHz CPU. Therefore, the 
approximate average current consumed is 100mA 
when it is busy, and the CPU voltage is Vcc=1.25 
volts (both collected from Intel Manual). The 
power consumption performance analysis results 
for various data sizes are then collected based on 
these current and voltage ratings. 

 
Effect of Plaintext Size on Power Consumption 
 

Figure 11 clearly shows the variation of energy 
consumption with different data sizes. It can also 
be inferred from the graph that it is similar to the 
data size versus encryption time graph in Fig.  9 
which implies that the energy consumed during an 
enciphering process is directly proportional to the 
encryption time. 
 

Figure 11 Data size versus energy consumption 
 
 CPU Time 
 
The CPU process time is the time that a CPU is 
committed only to the particular process of 
calculations. It reflects the load of the CPU. The 
more CPU time is used in the encryption process, 
the higher is the load of the CPU. 
 
In this paper, the CPU time is calculated using the 
technique described in [29] as follows: 
 

,݁݉݅ݐ ݕݏݑܾ ܷܲܥ ݑ݌ܿܶ ൌ
CPU ୳୲୧୪୧୸ୟ୲୧୭୬

ை௕௦௘௥௩௔௧௜௢௡ ௉௘௥௜௢ௗ
       (23) 

Where the observation period is equal to the 
enciphering time and CPU utilization for the 
encryption process is obtained from the task 
manager.  
 

It is found out that the longer the encryption time is 
the busier the CPU becomes. That’s, if the time 
required to encipher a certain text is longer, the 
CPU load (or busy time) is proportionally higher. 
 

Cipher Size 
 
One of the most integral Shannon's Characteristics 
of "Good" Ciphers is that the size of the enciphered 
text should be no larger than the plaintext of the 
original message [2]. 
 

As it is the case with other secret key encryption 
algorithms, in this work the size of the plaintext 
and the ciphertext are found to be the same 
fulfilling the Shannon's size Characteristics of 
"Good" Ciphers. The two merged pop-up message 
boxes portrayed in Fig. 12 verify that the plaintext 
and ciphertext, in this algorithm, are of the same 
size. 
  

 
 

Figure 12 Length measure of a clear and cipher texts 
 

Comparison with AES and RSA 
 

The performance of the designed algorithm is 
compared with the popular current-in-use secret 
key encryption algorithm, AES, and with a public 
key encryption, RSA. The data sets, used in the 
chaotic encryption, are encrypted using both AES 
and RSA, and their performance is evaluated for 
the same metrics used above. Here, while analyzing 
the performance of AES and RSA, only secure key 
lengths are used, 128 bits for AES and 1024 bits for 
RSA. 
 

Encryption Times  
 

Encryption times for same set of various data sizes, 
used to analyze the performance of the chaotic 
enciphering, are collected the ways depicted  in  
Fig 13. Eventually, they are put to graphs as 
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delineated in Fig. 14. It is found that the decryption 
times of RSA algorithm are higher than its 
encryption times. This is due the fact that the 
enciphering comprises modular computation of 
(plaintext)pubkey mode n, whereas the deciphering 
process involves the modular computation given as 
(plaintext)pubkeyprivkey mode n. PrivateKey *PubKey 
is much larger than PubKey, and hence requires 
higher computational time. 
 

Likewise, encryption times for AES, for the various 
data sizes enciphered, are collected. The 
deciphering times for AES are more or less close to 
the enciphering times.  
 

 
 
Figure 13: RSA crypto timers 

 

 
Figure 14: Encryption times of chaotic, RSA and 

AES 
 

Figure 14 shows that the chaotic encryption is 
much faster than RSA algorithm for any data size. 
Besides, it has better time performance than AES, 
too, but for smaller data sizes (<125 Kb).  
 
Encryption Throughput 
 
Figure 15 illustrates that the throughput 
performance of the chaotic encryption is very much 
high for smaller size of data, and it keeps on 
decreasing as the data size increases. It has higher 
performance than AES for smaller data sizes, but it 
is very much superior to RSA for any data size.  

 
Figure 15 Chaotic, RSA, and AES throughputs 
 

Encryption Power Consumption 
 

The power consumptions of the Chaotic, RSA and 
AES are depicted in Fig. 16.  
 

The figure demonstrates that the designed 
algorithm has less power consumption than AES 
for relatively small data sizes, and much better 
performance than the RSA for any data size. The 
graphs in this figure are similar to the ones on  
Fig. 14 proving that the energy consumed by an 
enciphering process is proportional to the time 
consumed by that process. 

 
 

    Figure 16  Power consumption of chaotic, RSA,    
and AES algorithms 
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Memory Cost 
 

In secret key encryption, the plaintext and cipher 
text are of the same size. Similarly, the plaintext 
and ciphertext of the designed algorithm are of the 
same size. But, considering the RSA, the cipher 
size is greater than the size of the input plaintext. 
As a result, the cipher of an RSA algorithm 
occupies more memory as compared to that of 
chaotic and AES. 
 
Security 
 
The security of the chaotic encryption scheme lies 
on the difficulty of obtaining the exact key 
combination from amongst the very large set of 
possible combinations of the key due to limitations 
in the computational power of today’s computers. 

 

Table 2: Summary of security comparison [5] 
 

Algorithm Number of 
operations 
required 

Examples  

Chaotic 2128(2k+1-1) Key=136 
bits2145 
operations 

AES 2n Key=128 
bits2128 
operations 

RSA ݁ඥଶכ௟௡௣כ୪୬ ሺ௟௡௣ሻ

݌݈݊
 

N=1024 bits 
290 
operations 

 
Table 2 summarizes the security comparison of 
the Multi-Scroll chaotic, AES and RSA 
encryption algorithms. The chaotic algorithm is 
superior to both. It meets such security properties 
as one way encryption, semantic security, and 
indistinguishability. Besides, it is prone to the 
three models of attacks namely total break, CCA1, 
and CCA2. 
 
 

CONCLUSION 
 

At present, Internet and network applications are 
growing very fast, so the need to protect such  
applications has increased. Encryption algorithms 
play an immense role in information security 
systems. This paper has presented the optimization 
of multi-scroll chaotic attractors for text encryption 
and its performance analysis. All essential and 
collateral parameters are systematically determined 

to satisfy the specific cryptographic security 
requirements. The algorithm solves at least some of 
the drawbacks suffered by existing cryptographic 
algorithms such as AES and RSA.  
In this paper, a multi-scroll chaotic enciphering 
algorithm is fully described and validated via 
functional and randomness tests. Then, appropriate 
metrics for performance measurements are 
identified; the performance of the algorithm was 
measured and compared with such existing 
cryptographic algorithms as RSA and AES.  The 
test results show that the designed algorithm works 
as required, i.e, the data enciphered by the 
enciphering process is fully recovered by the 
deciphering process. The test and security analysis 
prove that the cipher is not prone to cipher or 
statistical attack (including total break, CCAI, and 
CCA2), and the key is secure. It meets the three 
properties of security namely: one way encryption, 
semantic security, and indistinguishability. 
 
The performance of the chaotic encryption 
algorism is by far better than the RSA. It has less 
encryption time, less power consumption, and 
higher throughput than RSA. The size of the 
plaintext and ciphertext is also the same in the 
chaotic algorism which is not the case in RSA. 
RSA cipher is longer than the plaintext causing 
more resource consumptions and congestion in  
memory and bandwidth.  Comparing it with AES, 
it has better performance only for relatively smaller 
data sizes. The chaotic encryption has another 
advantage over RSA and AES in that it is key 
length independent. The key length can be made 
longer without significantly affecting the 
computational time. In addition, there are no 
known methods of attack so far for chaotic 
encryption! 
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