

*E‐mail: alemh29@gmail.com

Journal of EEA, Vol. 28, 2011

PERFORMANCE ANALYSIS OF CHAOTIC ENCRYPTION USING A SHARED
IMAGE AS A KEY

Alem Haddush Fitwi* and Sayed Nouh

Department of Electrical and Computer Engineering
Addis Ababa Institute of Technology, Addis Ababa University

ABSTRACT

Most of the secret key encryption algorithms in use
today are designed based on either the feistel
structure or the substitution-permutation structure.
This paper focuses on data encryption technique
using multi-scroll chaotic natures and a publicly
shared image as a key.

 A key is generated from the shared image using a
full period pseudo random multiplicative LCG.
Then, multi-scroll chaotic attractors are generated
using a hysteresis switched, second order linear
system. The bits of the image of the chaotic
attractors are mixed with a plaintext to obtain a
ciphertext. The plaintext can be recovered from the
ciphertext during the deciphering process only by
mixing the cipher with a chaos generated using the
same secret key. As validated by a functional, NIST
randomness, and Monte Carlo simulation tests, the
cipher is very much diffused and not prone to
statistical or selected cipher attacks.

In addition, the performance is measured and
analyzed using such metrics as encryption time,
encryption throughput, power consumption and
compared with such existing encryption algorithms
as AES and RSA. Then, the performance analysis
and simulation results verify that the chaotic based
data encryption algorithm is valid.

Key Words: Secret key encryption, shared image,
hysteresis switched second order system,
multiplicative LCG, chaotic attractors,
randomness.

INTRODUCTION

At present when the Internet provides essential
communication for tens of millions of people and is
being increasingly used as a tool for commerce,
security becomes a tremendously important issue to
deal with. There are many aspects to security and
many applications, ranging from secure commerce
and payments to private communications and
protecting passwords. The fast expansion of
computer connectivity necessitates protecting data
and messages from unauthorized tampering or
reading. Even the US courts have ruled that there

exists no legal expectation of privacy for email. It
is thus up to the user to ensure that communications
which are expected to remain private actually do
so. One of the techniques for ensuring privacy of
files and communications is Cryptography [1].

In general, there are three types of cryptographic
schemes: secret key (or symmetric) cryptography,
public-key (or asymmetric) cryptography, and hash
functions. In all cases, the initial unencrypted data
is referred to as plaintext. It is encrypted into
cipher-text, which will in turn be decrypted into
usable plaintext [1-3].

The paper is organized as follows: Firstly, related
works and progresses in the areas of cryptography
and chaos generation and applications are
examined. This is followed by the design, analysis
and testing of the chaotic encryption algorithm.
Performance measurements of the design and the
corresponding results are then presented. Finally
the conclusions that are drawn from the
investigation are given.

RELATED WORKS

Pertinent works and progresses in the areas of
cryptography and chaos are surveyed as follows:
Data Encryption Standard (DES) is a feistel
structure, block cipher that was selected by the
National Bureau of Standards as an official Federal
Information Processing Standard (FIPS) for the
United States in 1976 and which had subsequently
enjoyed widespread use internationally. DES is
now considered to be insecure for many
applications chiefly due to the 56-bit key size being
too small. In January, 1999, Distributed.net and
the Electronic Frontier Foundation collaborated to
publicly break a DES key in 22 hours and 15
minutes. Consequently, DES has been
withdrawn as a standard by the National
Institute of Standards and Technology and was
finally superseded by the Advanced Encryption
Standard (AES) on 26 May 2002 [1, 4 - 9].

Advanced Encryption Standard (AES) is an
encryption standard adopted by the US
Government. It was announced by National
Institute of Standards and Technology (NIST) as
U.S. FIPS PUB 197 (FIPS 197) on November 26,

Alem Haddush Fitwi and Dr. Sayed Nouh

18 Journal of EEA, Vol. 28, 2011

2001 after a 5-year standardization process. The
AES ciphers have been analyzed extensively and
are now used worldwide, as was the case with its
predecessor, DES. Until May 2009, the only
successful published attacks against the full AES
were side-channel attacks on some specific
implementations. The input and output for the AES
algorithm each consist of sequences of 128 bits.
The Cipher Key for the AES algorithm is a
sequence of 128, 192 or 256 bits. Other input,
output and Cipher Key lengths are not permitted by
this standard [1, 4, 10, 11].

RSA (which stands for Rivest, Shamir and
Adleman who first publicly described it) is an
algorithm for public-key cryptography. It is
believed to be secure given sufficiently long keys
and the use of up-to-date implementations. As of
2010, the largest (known) number factored by a
general-purpose factoring algorithm was 768
bits long, using a state-of-the-art distributed
implementation. RSA keys are typically 1024–
2048 bits long. Some experts believe that 1024-bit
keys may become breakable in the near term
(though this is disputed); few see any way that
4096-bit keys could be broken in the foreseeable
future. Therefore, it is generally presumed that
RSA is secure if n, called modulus which is the
product of two large random prime numbers, is
sufficiently large. If n is 300 bits or shorter, it can
be factored in a few hours on a personal computer,
using software already freely available. As the key
size increases, it becomes more expensive
computationally [12, 13]

Elliptic curve cryptography (ECC) is an
approach to public-key cryptography based on
the algebraic structure of elliptic curves over finite
fields. An ECC with a key-length greater than 112-
bit said to be secure but slow when used for
bulky data encryption. As the key size increases,
encryption using ECC becomes computationally
more expensive [12-14].

 “Chaos" means "a state of disorder", but the
adjective "chaotic" is defined more precisely in
chaos theory. For a dynamical system to be
classified as chaotic, it must be sensitive to initial
conditions, and topologically mixing. Over the
last two decades, chaotic oscillators have been
found to be useful with great potential in
many technological disciplines such as
information and computer sciences, biomedical

engineering, power systems protection, encryption
and communications, etc. Recently, there has been
some increasing interest in exploiting chaotic
dynamics for real-world engineering
applications, in which much attention has been
focused on effectively generating chaos from
simple systems by using simple controllers. Then a
survey has been made on a number of techniques
which have been developed for generating chaotic
attractors and their application in papers [15-19].

The motivation to design and evaluate a chaotic
based encryption algorithm is, therefore, because
cryptographic algorithms play an astronomical role
in information security systems, and in recent
years, as the importance and the value of
exchanged data over the Internet or other media
types have been increasing alarmingly, there has
been a search for the best solution to offer the
necessary protection against the data thieves’
attacks. On the other side, cryptographic algorithms
consume a significant amount of such computing
resources as CPU time, memory, and battery
power. As a consequence, there has been a great
interest of designing cryptographic algorithms
which are secure (or reliable), faster, efficient and
with no known method of attacks.

DESIGN, ANALYSIS, AND TEST OF THE
CHAOTIC ENCRYPTION ALGORITHM

Design overview

In the abstract, the design of a chaotic based
crypto-system comprises five major tasks as
delineated in Fig. 1. The tasks include image
processing, key generation, generation of chaotic
attractors, enciphering process, and deciphering
process. In addition, the design is tested using a
sample plaintext to verify if it can function as
designed and required, and it is validated using
statistical randomness and Monte Carlo simulation
tests. Eventually, the type of techniques used to
manage the secret key of the designed chaotic
crypto-system, and to provide a digital finger print
of the shared image to check its integrity are
presented.

Performance Analysis of Chaotic Encryption using a Shared Image as a Key

Journal of EEA, Vol. 28, 2011 19

Figure 1 Chaotic crypto-system

Shared Image

In this crypto-system, the same image, in lieu of the
secret key itself, is shared amongst all
communicating (sending and receiving) parties
from which the secret key is extracted. It is
publicly shared by communicating parties just like
a public key of a public-key encryption, only the
information required to extract the key from the
image is communicated secretly.

Figure 2 Grayscale image.

Keys having lengths less than the image size
(width*length) are extracted from this shared
image. The shared image used in this paper and
from which a secret key is extracted is the one
portrayed in the Fig. 2. But also it is possible to use
any other image which is not completely black or

white as a key! The minimum key length allowed is
128 bits for it is the minimum secure key length
used in today’s popular secret key encryption
algorithms. Above it, it can be of any length as
long as it is less than the size of the shared image.

The shared image is then processed to make it
convenient to extract the secret key from its pixel
values. The image processing here comprises such
processes as image reading, converting to
grayscale, and grabbing the pixel values of the
grayscale image. If the image is RGB, it is first
converted to a grayscale, as portrayed in Fig. 2,
using the method convertTogray() from which
pixel values, ranging from 0 to 255, are grabbed
into a two dimensional array. Then, such important
attributes as width (w), height (h), and pixel values
(image Pixels) are accessed from the grayscale
image in Fig. 2 as follows:

w = image.getWidth() (1)
h= image.getHeight() (2)

Image Pixel [w] [h]= readGrayImage (3)
Pixel (grayImage)

 Key Generation

Any secret key of length less than the size of the
shared image can be extracted from the two
dimensional pixel values of the shared image stored
in the 2D array, ImagePixel[w][h], in Eq. 3.

Key. length<= w*h (4)

Where the values of w, and h are obtained in Eqs.1,
and .2, respectively.

In this paper, the key is extracted from the 2D pixel
values of the grayscale image using a full period
pseudo random generator called linear congruential
generator, LCG, constructed using defined values
in GF (m) with a period of m-1. Then, the extracted
key, keyExtract, is converted to binary values, and
finally substituted using a seven-bit input and five-
bit output S-Boxes to obtain the final enciphering
and deciphering key, keyFinal.

The pseudo random generator used to extract a key
from the grayscale image is given in Eq. 5, where
69,621 is the multiplier, and 231-1 is the modulus. It
is called multiplicative LCG.

Xn= (69,621Xn-1) mod (231-1) (5)

The random numbers generated using the above
algorithm [20] are used as indices of the 2D array

Alem Haddush Fitwi and Dr. Sayed Nouh

20 Journal of EEA, Vol. 28, 2011

of pixels, ImagePixel[][], to extract a key from the
2D pixel values of the grayscale image as follows,
where Xo and X1 are seed values.

For i=1:key.length do

 idx1=((69,621Xo) mod (231-1))mod w;
 idx2=((69,621X1) mod (231-1))mod h

keyExtract[i]=ImgPixel[idx1][idx2];
end

Then, the keyBinary[] is divided into blocks of
size 49 bit each, in turn, each block is divided into
seven 7-bit pieces before being processed by the
substitution boxes. Each of the seven S-boxes
replaces its seven input bits with five output bits
according to a non-linear transformation, provided
in the form of a look up table. The S-boxes
strengthen the security of the key; i.e substituted
bits are used instead of the actual bits randomly
extracted from the shared image thereby increasing
the efforts of cryptanalysts who try to infer the key
using brute force analysis or selected cipher attack.

The S-Boxes in this algorithm serve more or less
the same purpose as the S-Boxes used in DES and
AES; they are however different from those used in
DES and AES. Here seven S-Boxes are used. Each
of them is constructed using defined transformation
of values in GF (25) comprising 4 unique rows and
32 columns. Each raw comprises 32 elements
starting from 0 to 31 in a thoroughly random
sequence. And the rows are numbered from 0
through 3.

The input bits are used as addresses in tables of the
S-boxes. Each group of seven bits will give us an
address in a different S-box. The first and last bits
of the 7-bit input indicate row number, and the
other 5 bits give the number of columns. Located
at that address will be a 5-bit number. This 5-bit
number will replace the original 7 bits. The net
result is that the seven groups of 7 bits are
transformed by the seven S-Boxes into seven
groups of 5 bits for 35 bits total to obtain
keyFinal[]= S-Boxes(keyExt).

 Generation of Chaotic Attractors

In this paper, the required chaotic attractors are
generated using a hysteresis switched second order
linear system. The generation process comprises
calculation of initial conditions from keys
generated earlier, and solving the second order

linear system using the concept of second order
homogeneous differential equations.
Hysteresis Switched Second Order Linear
System

There are many techniques of generating chaos; in
this paper a system called “Hysteresis Switched
second order linear system” is used. It is a chaotic
oscillator triggered only by initial conditions. It has
no inputs except the initial conditions, Xo and Yo.

Then once triggered by the initial values, it keeps
on oscillating and generating chaotic attractors for
a time t, and moves from one scroll to another
depending on the value of n (number of scrolls)
provided due to the feedback hysteresis series as
depicted in Fig 3.

Figure 3 Chaotic oscillator [15].

The mathematical description of the hysteresis
switched system in Fig 3 is given by:

 ൜
ሶݔ ൌ ݕ

ሶݕ ൌ െݔ ൅ ݕߙ2 ൅ ,ݔሺܪ ݊ሻሶ (6)

where Xo, and Yo are the initial conditions, α is a
positive constant, x and y are state variables, H(x,
n) is a hysteresis series described in Eq. 7 and 8,
and n is the number of scrolls.

,ݔሺܪ ݊ሻ ൌ ∑ ݄௜ሺݔሻ௡

௜ୀଵ (7)
and

݄௜ ൌ ൜
ݔ ݎ݋݂ 1 ൐ ݅ െ 1
ݔ ݎ݋݂ 0 ൏ ݅ (8)

Solution of Second Order Linear System

Differentiating both sides of the first Equation of
system 6 produces the following:

dt

dy

dt

xd


2

2

 (9)

Performance Analysis of Chaotic Encryption using a Shared Image as a Key

Journal of EEA, Vol. 28, 2011 21

Then the differentiated y in Eq. 9 is substituted by
the equivalent expression given in the second
equation of system (3.6). Hence, Eq. 3.9 becomes:

ௗమ௫

ௗ௧మ ൌ ௗ௬

ௗ௧
ൌ െݔ ൅ ߙ2 ௗ௫

ௗ௧
൅ ,ݔሺܪ ݊ሻ (10)

Rearranging Eq. 10, gives out a homogeneous
equation of the form

 xfcx
dt

dx
b

dt

xad


2

2

 (11)

Where f(x)=0. Therefore Eq. 11 is solved as

follows, letting mtex  , and ܦ ൌ ௗ௫

ௗ௧

݁௠௧ሺܽܦଶ ൅ ܦܾ ൅ ܿሻ ൌ 0 (12)

Then, if ݁௠௧ is to be a solution,

02  cbmam

a

acbb
m

2

42 
 (13)

Using the values of m1 and m2, obtained from

Eq. 13, the solutions are tmex 1
1  and tmex 2

2  ,

then combining both solutions to obtain the general
solution

2211 xcxcx 
tmtm ececx 21

21  (14)

If the system is to generate chaos, its solution must
be complex; i.e for a=1, b=2 , and c=1 (obtained
from Eq. 10,  im  . Then,

 ݉ ൌ ߙ േ ଶ െߙ√ 1 ൌ ߙ ൅ (15) ߚ݅

Hence, 21   , obtained by solving

Equation 13.

Euler’s formulae,








sincos

sincos

ie

ie
i

i






 (16)

If m1=  i and m2=  i , then using the

Euler’s formulae in 16, the solution in 15
becomes:

ሻݐሺݔ ൌ ݁ఈ௧ሾݐߚݏ݋ܿܣ ൅ ሿ (17)ݐߚ݊݅ݏܤ

The solution for the state variable y is therefore
obtained as follows,

    
dt

tBtAed

dt

dx
ty

t  sincos 
 (18)

Solving for y and x in Equation 18, produces

ሻݐሺݔ ൌ ݁ఈ௧ ቂܺ௢ܿݐߚݏ݋ ൅ ݅ ቀ
௒೚ିఈ௑೚

ఉ
ቁ ቃݐߚ݊݅ݏ

ሻݐሺݕ ൌ ݁ఈ௧ ቂ ௢ܻܿݐߚݏ݋ ൅ ఈሺ௒೚ିఈ௑೚ሻ

ఉ
 ቃ (19)ݐߚ݊݅ݏ

Calculation of Initial Conditions

In this paper, the initial conditions of system 6 are
calculated using the bit values of the keyFinal
array, which is the output of the S-Boxes, as
follows.

 ܺ௢ ൌ ݎܽݒ ൅ ݈ܺܽ݊݅ܨݕ݁݇
 ௢ܻ ൌ ݎܽݒ ൅ (20) ܻ݈ܽ݊݅ܨݕ݁݇

Where var is a user defined value, kept secret as
part of the key, keyFinalX and keyFinalY are two
different keys generated using different seed values
for the LCG.

Figure 4 Five-scroll chaotic attractors

Alem Haddush Fitwi and Dr. Sayed Nouh

22 Journal of EEA, Vol. 28, 2011

Figure 4 portrays the 5-scroll chaotic attractors
generated using the solutions of system 6 given in
Eq. 19. The chaos is generated using a key of

length 136 bits, α=0.0049, and 21  
=0.999976. The chaos is sensitive to the α values,
and secure range of α values are determined using
an algorithm that makes use of the monobit test,
described later

Enciphering Process

During the enciphering process, the plaintext is
mixed with the generated chaos using a logical
bitwise XOR operator as depicted in Fig 5.

Figure 5 Enciphering process

During chaos processing, three equal sections
namely upper, middle and lower are cropped from
the overall balanced chaos shown in Fig 4. and
converted to grayscales as depicted in Figs 6 (a),
(b), and (c), and XORed together to further
increase the probability of the balance of 1’s and
0’s by avoiding localized imbalances. Then, the
combination of the three crops is resized as per the
size of the input plaintext as portrayed in Fig. 7.
Through this process, all the security properties
which include one way encryption, semantic
security, and indistinguishability are achieved.

(a) Upper crop

(b) Middle crop

(c) Lower crop

Performance Analysis of Chaotic Encryption using a Shared Image as a Key

Journal of EEA, Vol. 28, 2011 23

(d) Mixed=a XOR b XOR c

Figure 6 Chaos cropping and mixing.

Figure 7 Resized balanced chaos.

Deciphering Process

The process of deciphering in this chaotic
algorithm is essentially the same as the enciphering
process. The rule is as follows: the same key used
during the enciphering process is used in the
deciphering process, but the cipher text, in lieu of
the plaintext, is used as input to the chaotic
algorithm. The ciphertext, which is the output of
the enciphering process, is mixed with the
appropriately sized chaos generated using the same
key and the XOR operator.

 Design Test

To verify if the designed chaotic algorithm can
function as required, a sample plaintext was

enciphered and then deciphered. A plaintext is
browsed using the GUI depicted in Fig. 8, and is
enciphered to convert it into a form which is
unintelligible. Eventually, the ciphertext is
deciphered to check if the chaotic deciphering
process can fully recover the clear text (or
plaintext) back from it. As copied from the text
areas of the GUI in Fig. 8, portions of the plaintext,
ciphertext, and decrypted text are respectively
displayed below verifying that the chaotic
algorithm works as designed and required. i.e the
plaintext and recovered (or decrypted text) are the
same.

Plaintext=How do we protect our most valuable
assets?

Ciphertext=:"u1:u"0u%':!06!u:'u8:&!u#494790u4&
&0!&ju;

Deciphered text=How do we protect our most
valuable assets?

What is more, a number of NIST statistical tests
and Monte Carlo Simulation test were performed
on the chaotic sequence to attempt to compare and
evaluate the sequence to a truly random sequence
as depicted in Table 1. Then, the results validate
the algorithm.

Figure 8 Chaotic crypto system

Alem Haddush Fitwi and Dr. Sayed Nouh

24 Journal of EEA, Vol. 28, 2011

Table- 1: Summary of test results

NIST Test Objective P-value Decision
Rule

Monobit Proportion of
1’s and 0’s

0.9491

0.01

Block
Frequency

Proportion of
1’s and 0’s

0.9998

Run Oscillation b/n
1 and 0

0.9542

Spectral Reveal
periodicities

0.0695

Linear
Complexit
y

Length of
LFSR*

0.8030

 *LFSR=Linear Feedback Shift Register

Key Exchange

In general, in a secret key encryption, as the
number of communicating parties increase the
exchange of the secret key becomes insecure. i.e n
users who want to communicate in pairs need n *
(n - 1)/2 keys [2]. The number of keys needed
increases at a rate proportional to the square of the
number of users! So a property of symmetric
encryption systems is that they require a means of
key distribution.

In this paper, all the information required for the
extraction of the key from the publicly shared
image and other constants is encrypted using a
public-key RSA, and then sent to the recipient. Let
INFO=Seeds + n + var + α + HKey + LenMul;
then, it is sent as follows:

E (KPUB-R, E(KPRIV-S, INFO))

where E stands for RSA encryption, Kpub=public
key, Kpriv=private key, R stands for Receiver, S
stands for Sender, n is the number of scrolls, and
LenMul is the number of digits contained in the
multiplier of the PRNG used for key extraction.
Besides, an HMAC that serves two purposes
namely shared image integrity check, and origin
authentication is generated using keyed SHA-1 as
HMAC=H (HKey, Shared image).

PERFORMANCE ANALYSIS

In this paper, relevant metrics are identified,
performance of the chaotic algorithm is measured,

and eventually, the chaotic encryption algorithm is
compared with existing one public key, RSA and
one secret key, AES, encryption algorithms.

Metrics and Performance

In this paper, five pertinent metrics are used to
evaluate the performance of the chaotic encryption.
The metrics include encryption/decryption time,
power consumption, encryption throughput, CPU
time and cipher size. Then the experiment was
conducted and performance results were collected
using a laptop having processor of Intel (R)
Pentium (R) Dual CPU T2370 @ 1.73GHz,
1.73GHz, and a RAM of 1GB.

Encryption Time

In most encryption algorithms, the encryption time
is dependent on the computational complexity of
the algorithm, key length, and the size of the
plaintext to be encrypted. Here, in this paper, a
number of encryption times for various plaintext
sizes and key length are collected and analyzed as
follows. The encryption time and text size are
measured using a timer and bit length reader
method built as part of the crypto system.

Effect of Key Length on the Encryption Time

Unlike other encryption algorithms, the key length
does not affect significantly the computation time
of the chaotic algorithm designed in this paper.
This is due to the fact that the key is used only to
calculate the initial conditions of the system used to
generate chaos. The initial conditions are calculated
in ways described in Eq. 20.

Effect of Plaintext Size on the Encryption Time

Various data sizes ranging from 7.84 Kb to 500 Kb
are enciphered, and their respective encryption
times are collected.

Performance Analysis of Chaotic Encryption using a Shared Image as a Key

Journal of EEA, Vol. 28, 2011 25

Figure 9: Data size versus encryption time

Figure 9 depicts that the enciphering time increases
as the data size to be enciphered is increased. The
data size and the enciphering time are linearly
related.

Encryption Throughput, Xe

It is the measure of the number of bytes of
ciphertext completed (enciphered) during an
observation period (enciphering time).
Mathematically represented:

 sTimeEncryption

bytesinscompletionofnumber
xe  (21)

The Effect of Changing the plaintext size on the
Encryption Throughput

The graph in Fig. 10 shows that for initially small
size data the throughput is not affected; rather it
increases with increase in data size. However, once
the data size gets large enough, further increase in
the data size keeps on diminishing the encryption
throughput.

Figure 10 Encryption throughput verses data sizes

Power Consumption

Such technologies as CPU and memory are
growing faster, and so is their need for power.
However, battery technology is increasing at a
much slower rate, forming a battery gap. Because
of this, battery capacity plays a major role in the
usability of devices and algorithms [21]. Hence, it
is worthwhile to analyze the power consumption of
the designed chaotic algorithm.

For computation of the energy cost of encryption,
we use the same techniques as described in [21].
We present a basic cost of encryption represented
by the product of the total number of clock cycles
taken by the encryption and the average current
drawn by each CPU clock cycle. The basic
encryption cost is in unit of ampere-cycle. To
calculate the total energy cost, we divide the
ampere-cycles by the clock frequency in
cycles/second of a processor; we obtain the energy
cost of encryption in ampere-seconds. Then, we
multiply the ampere-seconds with the processor’s
operating voltage, and we obtain the energy cost in
Joule. That’s, by using the cycles, the operating
voltage of the CPU, and the average current drawn
for each cycle, we can calculate the energy
consumption of cryptographic functions. Then, the
amount of energy consumed by the chaotic
algorithm C to achieve its goal (encryption or
decryption) is given by:

E = V cc*I*T joules (22)

Where for a given hardware Vcc is fixed. The
encryption time, T, is considered the time that an
encryption algorithm takes to produce a cipher text

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4 Throughputs

Data sizes in bytes

T
hr

ou
gh

pu
ts

 o
f

va
rio

us
 d

at
a

si
ze

s

Alem Haddush Fitwi and Dr. Sayed Nouh

26 Journal of EEA, Vol. 28, 2011

from a plaintext, and I is the average current
consumed per CPU cycle.

In this paper, the experiment was conducted and
performance results were collected using a laptop
with Pentium Dual 1.73GHz CPU. Therefore, the
approximate average current consumed is 100mA
when it is busy, and the CPU voltage is Vcc=1.25
volts (both collected from Intel Manual). The
power consumption performance analysis results
for various data sizes are then collected based on
these current and voltage ratings.

Effect of Plaintext Size on Power Consumption

Figure 11 clearly shows the variation of energy
consumption with different data sizes. It can also
be inferred from the graph that it is similar to the
data size versus encryption time graph in Fig. 9
which implies that the energy consumed during an
enciphering process is directly proportional to the
encryption time.

Figure 11 Data size versus energy consumption

 CPU Time

The CPU process time is the time that a CPU is
committed only to the particular process of
calculations. It reflects the load of the CPU. The
more CPU time is used in the encryption process,
the higher is the load of the CPU.

In this paper, the CPU time is calculated using the
technique described in [29] as follows:

,݁݉݅ݐ ݕݏݑܾ ܷܲܥ ݑ݌ܿܶ ൌ
CPU ୳୲୧୪୧୸ୟ୲୧୭୬

ை௕௦௘௥௩௔௧௜௢௡ ௉௘௥௜௢ௗ
 (23)

Where the observation period is equal to the
enciphering time and CPU utilization for the
encryption process is obtained from the task
manager.

It is found out that the longer the encryption time is
the busier the CPU becomes. That’s, if the time
required to encipher a certain text is longer, the
CPU load (or busy time) is proportionally higher.

Cipher Size

One of the most integral Shannon's Characteristics
of "Good" Ciphers is that the size of the enciphered
text should be no larger than the plaintext of the
original message [2].

As it is the case with other secret key encryption
algorithms, in this work the size of the plaintext
and the ciphertext are found to be the same
fulfilling the Shannon's size Characteristics of
"Good" Ciphers. The two merged pop-up message
boxes portrayed in Fig. 12 verify that the plaintext
and ciphertext, in this algorithm, are of the same
size.

Figure 12 Length measure of a clear and cipher texts

Comparison with AES and RSA

The performance of the designed algorithm is
compared with the popular current-in-use secret
key encryption algorithm, AES, and with a public
key encryption, RSA. The data sets, used in the
chaotic encryption, are encrypted using both AES
and RSA, and their performance is evaluated for
the same metrics used above. Here, while analyzing
the performance of AES and RSA, only secure key
lengths are used, 128 bits for AES and 1024 bits for
RSA.

Encryption Times

Encryption times for same set of various data sizes,
used to analyze the performance of the chaotic
enciphering, are collected the ways depicted in
Fig 13. Eventually, they are put to graphs as

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Energy Consumption During Enciphering Process

Data sizes in kilo bits

E
ne

rg
y

C
on

su
m

ed
 in

 jo
ul

es

Performance Analysis of Chaotic Encryption using a Shared Image as a Key

Journal of EEA, Vol. 28, 2011 27

delineated in Fig. 14. It is found that the decryption
times of RSA algorithm are higher than its
encryption times. This is due the fact that the
enciphering comprises modular computation of
(plaintext)pubkey mode n, whereas the deciphering
process involves the modular computation given as
(plaintext)pubkeyprivkey mode n. PrivateKey *PubKey
is much larger than PubKey, and hence requires
higher computational time.

Likewise, encryption times for AES, for the various
data sizes enciphered, are collected. The
deciphering times for AES are more or less close to
the enciphering times.

Figure 13: RSA crypto timers

Figure 14: Encryption times of chaotic, RSA and

AES

Figure 14 shows that the chaotic encryption is
much faster than RSA algorithm for any data size.
Besides, it has better time performance than AES,
too, but for smaller data sizes (<125 Kb).

Encryption Throughput

Figure 15 illustrates that the throughput
performance of the chaotic encryption is very much
high for smaller size of data, and it keeps on
decreasing as the data size increases. It has higher
performance than AES for smaller data sizes, but it
is very much superior to RSA for any data size.

Figure 15 Chaotic, RSA, and AES throughputs

Encryption Power Consumption

The power consumptions of the Chaotic, RSA and
AES are depicted in Fig. 16.

The figure demonstrates that the designed
algorithm has less power consumption than AES
for relatively small data sizes, and much better
performance than the RSA for any data size. The
graphs in this figure are similar to the ones on
Fig. 14 proving that the energy consumed by an
enciphering process is proportional to the time
consumed by that process.

 Figure 16 Power consumption of chaotic, RSA,
and AES algorithms

0 50 100 150 200 250 300 350 400 450 50
0

5

10

15

20

25

30

35
Encryption times of Chaotic, RSA and AES

Data sizes in kilo bits

E
nc

ry
pt

io
n

T
im

es
 in

 s
ec

Chaotic

RSA
AES

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6
x 10

4 Thruputs of Chaotic, RSA and AES

Data sizes in bytes

T
hr

up
ut

s

Chaotic

RSA
AES

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Energy Consumption of Chaotic, RSA and AES Algorithms

Data sizes in kilo bits

E
ne

rg
y

C
on

su
m

ed
 in

 jo
ul

es

Chaotic

RSA
AES

Alem Haddush Fitwi and Dr. Sayed Nouh

28 Journal of EEA, Vol. 28, 2011

Memory Cost

In secret key encryption, the plaintext and cipher
text are of the same size. Similarly, the plaintext
and ciphertext of the designed algorithm are of the
same size. But, considering the RSA, the cipher
size is greater than the size of the input plaintext.
As a result, the cipher of an RSA algorithm
occupies more memory as compared to that of
chaotic and AES.

Security

The security of the chaotic encryption scheme lies
on the difficulty of obtaining the exact key
combination from amongst the very large set of
possible combinations of the key due to limitations
in the computational power of today’s computers.

Table 2: Summary of security comparison [5]

Algorithm Number of
operations
required

Examples

Chaotic 2128(2k+1-1) Key=136
bits2145
operations

AES 2n Key=128
bits2128
operations

RSA ݁ඥଶכ௟௡௣כ୪୬ ሺ௟௡௣ሻ

݌݈݊

N=1024 bits
290
operations

Table 2 summarizes the security comparison of
the Multi-Scroll chaotic, AES and RSA
encryption algorithms. The chaotic algorithm is
superior to both. It meets such security properties
as one way encryption, semantic security, and
indistinguishability. Besides, it is prone to the
three models of attacks namely total break, CCA1,
and CCA2.

CONCLUSION

At present, Internet and network applications are
growing very fast, so the need to protect such
applications has increased. Encryption algorithms
play an immense role in information security
systems. This paper has presented the optimization
of multi-scroll chaotic attractors for text encryption
and its performance analysis. All essential and
collateral parameters are systematically determined

to satisfy the specific cryptographic security
requirements. The algorithm solves at least some of
the drawbacks suffered by existing cryptographic
algorithms such as AES and RSA.
In this paper, a multi-scroll chaotic enciphering
algorithm is fully described and validated via
functional and randomness tests. Then, appropriate
metrics for performance measurements are
identified; the performance of the algorithm was
measured and compared with such existing
cryptographic algorithms as RSA and AES. The
test results show that the designed algorithm works
as required, i.e, the data enciphered by the
enciphering process is fully recovered by the
deciphering process. The test and security analysis
prove that the cipher is not prone to cipher or
statistical attack (including total break, CCAI, and
CCA2), and the key is secure. It meets the three
properties of security namely: one way encryption,
semantic security, and indistinguishability.

The performance of the chaotic encryption
algorism is by far better than the RSA. It has less
encryption time, less power consumption, and
higher throughput than RSA. The size of the
plaintext and ciphertext is also the same in the
chaotic algorism which is not the case in RSA.
RSA cipher is longer than the plaintext causing
more resource consumptions and congestion in
memory and bandwidth. Comparing it with AES,
it has better performance only for relatively smaller
data sizes. The chaotic encryption has another
advantage over RSA and AES in that it is key
length independent. The key length can be made
longer without significantly affecting the
computational time. In addition, there are no
known methods of attack so far for chaotic
encryption!

REFERENCES

[1] Smart, N., “Cryptography: An Introduction”,

CRC press, pp.11-387, June 2010.

[2] Pfleeger, C. P., “Security in Computing”,

Pfleeger Consulting Goup, Shari Lawrence
Pfleeger - RAND Corporation, October, 2006.

[3] Stallings, W., “Data and computer

Communications”, Prentice Hall, New Jersey,
1996.

Performance Analysis of Chaotic Encryption using a Shared Image as a Key

Journal of EEA, Vol. 28, 2011 29

[4] Menezes P., Oorschot, V., and Vanstone, S.,
“Hand book of Applied Cryptography”, CRC
press, 1996.

[5] Stallings,W. “Lecture Notes for use with

Cryptography and Network Security”, May
2010.(Online).

[6] FIPS PUB 46-3 Federal Information

Processing Standards Publication October 25,
1999.

[7] FIPS PUB 46-2 Federal Information

Processing Standard Publication December 30,
1993.

[8] FIPS PUB 46 Federal Information Processing

Standard Publication January 15, 1977.

[9] FIPS PUB 46-1 Federal Information

Processing Standard Publication January 22,
1988.

[10] Federal Information Processing Standards

Publication 197, Announcing the Advanced
Encryption Standard (AES), November
26,2001.

[11] Rhee, M.Y., “Internet Security,

 Cryptographic Principles, Algorithms
 and Protocols”, John Wiley & Sons
 2003.

[12] Gura, N., Patel, A., Wander, A.,Eberle, H.

and Shantz, S.C. “Comparing Elliptic Curve
Cryptography and RSA on 8-Bit CPUs”,
International Association for Cryptologic
Research, 2004.

[13] Wenbo Mao Hewlett-Packard Company,

“Modern Cryptography:Theory and
Practice” John Wiley & Sons July 2003.

[14] Anoop,M.S., “Elliptic Curve Cryptography
an Implementation Guide”, 2006.(Online)

[15] Han, F., Lu, J., Yu, X., Chen,G. and Feng,

Y.,Generating Multi-Scroll Chaotic
Attractors Via a Linear Second Order
Hysteresis System”, Watam Press, 2005.

[16] L' ua , J., Hanb, F., Yub, X. and Chenc, G.,

“Generating 3-D multi-scroll chaotic
attractors: A hysteresis series switching
method” , Elsevier 18 May 2004

[17] Han, F., Hua, J., Yub, X. and Wang, Y.,

“Fingerprint Images encryption via multi-
scroll chaotic attractors”, Elsevier, 2007.

[18] Lü, J., Murali, K., Sinha, S., Leung, H. and

Aziz-Alaoui, M. A., “Generating multi-
scroll chaotic Attractors by thresholding”,
Elsevier , 30 January, 2008.

[19] Fengling Han, Xinghuo Yu, and

Jiankun Hu, “A New Way of Generating
Grid-Scroll Chaos and its Application to
Biometric Authentication”, Melbourne VIC
Elsevier 2001.

[20] Jain, R., “Art of Computer Systems

Performance Analysis Techniques For
Experimental Design Measurements
Simulation and Modeling”, 2004. (Online)

[21] Naik, K. and Wei, D. S. L. “Software

implementation strategies for power-
conscious systems,” Mobile Networks and
Applications, Vol. 6, pp. 291-305, 2001.

	Performance Analysis of1
	Performance Analysis of18-19
	Performance Analysis of20-21
	Performance Analysis of22-23
	Performance Analysis of24-25
	Performance Analysis of26-27
	Performance Analysis of28-29

