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ABSTRACT

The theory of elasticity of continua is employed to
show the background of spring formulas that are
introduced at the bases of structures to account for
immediate static deformation of soils. This is

followed by providing sets of such valuable
formulas for use in practical modeling of structures
founded on deformable soils. Additional spring
formulas that account for primary and secondary
consolidation settlement are derived It is shown

that these vertical springs can be joined in series to
account for all types of soil deformation ­
immediate, primary consolidation, and secondary
consolidation or creep. The application of the
springs is illustrated using a simple buildingframe
subjected to gravity loads only The internal forces
in the structural members with and without flexible
base elements showed notable differences. The
significance of the introduction of flexible-base
elements in taller and more rigid structures
subjected to lateral loads can be expected to be
even larger. The influence of the consolidation
springs could particularly be more significant if
different foundation elements of a structure rest on
compressible layers of different properties and
varying thickness. A companion paper deals with a
parametric study on the influence of elastic base
springs, in which the height and type of the
structural system, the soil type, and the embedment
depth ofthefoundation are varied

INTRODUCTION

The analysis of structures is routinely conducted by
treating their bases as finnly fixed so that no
displacements and rotations are allowed. This
conventional approach was justifiable in the distant
past, when studies on soil-structure interaction
(SSI) did not make significant advances. However,
SSI problems have been topics of research for the
past many decades since the pioneering works of
the 1930's in the field [1]. Presently, a wealth of
information has accumulated that can be used for

purposes of routine design and further research
[3,4,5,6].

The early works in this area focused on circular
foundations resting on the surface of an elastic half
space subjected to different modes of loading.
Later on, subsequent studies considered effects of
foundation shapes, foundation embedment, soil
layering, dynamic loading, and even inelastic
response. Presently, there is a wealth of
information regarding the behavior of both
statically and dynamically loaded foundations
[3,4,5,6]. Results of such studies are commonly
presented in form of relationships between the
applied load and the resulting surface deformation.
In other words, for static cases, the results are
mathematical expressions for the coefficients of
springs that could be introduced at the bases to
account for the soil deformability. Therefore, the
continued use of fixed-base models cannot be

easily justified on the mere ground of unavailability
of information.

This paper aims at:
,. Providing a highlight of the background theory

of spring formulas for immediate (short term)
soil deformations to be used at bases of

structures in static analyses
• Compiling important spring formulas found

scattered in sources that are difficult to access

by practicing engineers for the most important
cases of soil and foundation conditions.

• Deriving relations for additional static spring
coefficients that account for long-term static
soil deformations including primary and
secondary consolidation settlements.

• Illustrating the use of the springs in statically
loaded structures so that their potential
significance is understood.

Before directly embarking on the derivation and
compilation of the spring formulas, the potential
influence of flexible supports on internal stresses
and strains of structures is first demonstrated in the

following section by considering very simple cases
oftransversally and axially loaded beams.

FLEXIBLE-BASE PARAMETERS

The elements to be employed at the base of
structural models to account for SSI effects are
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linear springs in the case of static loading and a
combination of springs and viscous dashpots in the
case of dynamic loading. The parameters of these
elements are derived from comparison of the
governing equations of the actual soil-foundation
system with those of the corresponding mechanical
models intended to replace the fonner. This work
focuses on the use of linear springs at bases of
structures.

The theoretical considerations underlying the
derivation of spring coefficients for the case of
immediate static soil deformation are provided in
the following subsections. This will be
accompanied by presentations of formulas for
selected common cases with the intention of

making them accessible for practical use.
Additional spring coefficients are also derived that
account for long-teml soil deformations, namely
one-dimensional plimary consolidation and creep
settlements.

1. Springs for Immediate Soil Deformability

(a) Circular Foundations on the Surface of an
Elastic Half Space

The ideally flexible circular foundation of radius R
shown in Fig. lea) resting on the surface of an
elastic half space and subjected to a uniformly
distributed vertical static load of q is considered.
The spring coefficient (Kv) e is sought for use in the
model rigid fuoting shown in Fig. l(b) with the
intention of replacing the half space.

(a)

(b)

Figure 1 (a) An ideally flexible circular footing on
the surface of an elastic half space;

(b) A model of the rigid circular footing
supported by a linear spring
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The stress and strain components at points below
the center of the loaded circular region can be
easily detemlined in closed forms by integrating
Boussinesq's solution for a vertical point load on
the surface of an elastic half space, which is based
on the theory of elasticity. Ahlvin and Ullery, as
cited in [2], solved this problem for all stress
components at an arbitrary point in the half space
using cylindlical coordinates. They provided
formulas and tabular values of their accompanying
influence factors [2].

By integrating the vertical strains over the depth,
they also derived the following expression for the
vertical elastic settlement of the surface of the half

space] :

(s ) = R 1- y2 I (1)
e z=O.}Z", q E C

where E and y are the elasticity modulus and
Poisson ratio, respectively, of the half space. The
values of the dimensionless influence factor Ie

depend on the nonnalized coordinates siR and z/R,
where sand z are the radial and vertical coordinates

of the point under consideration. Its value for the
average settlement ofthe flexible foundation is 1.7.
Schleicher as cited in [2], showed that the uniform
vertical settlement of the ideally rigid foundation is
about 7% less than the average settlement of the
ideally flexible circular foundation [2]. Then, the
uniform settlement of the rigid circular footing
becomes

l-v2
(S) .. =1.58qR- (2)

e ngld E

Equation (2) is now equated to the deflection ofthe
spling supporting the model foundation shown in
Fig. l(b) under the action of the same load. After
simplifying, rearranging, and introducing the shear
modulus G = E/2(1 + y) of the elastic half space, the

following expression for the spling coefficient is
obtained:

(K ) = 4GR (3)
v, 1- y

This is the coefficient of vertical elastic spring one
finds in fue literature for a circular rigid footing
resting on the surface of an elastic half space
subjected to a central vertical loading for use in the
model foundation of Fig. 1(bl

1 The presentation ofthe details of elasticity theory relationships
underlying this equation is omitted.
2 While Eq. (3) for circular foundations and Eqs. (9) and (l0) in
the following section for rectangular foundations are derived by
the author himself from considerations of elasticity theory
without inertia forces, the same relations found in the literature

originate from dynamic considerations that involve inertia
forces in the stress equations.
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Proceeding in a similar manner of integrating
appropriate strains, one can also determine the
spring coefficients for the remaining degrees of
freedom of the rigid foundation on the surface of an
elastic half space. These are summarized in Table 1
for all degrees of freedom of a rigid circular
foundation.

in which, m = L/ B, B is the shorter and L is the

longer side of the loaded rectangular region [2].

Table I: Static spring coefficients for a rigid
circular foundation resting on the surface
of an elastic half space [3,4]

Vertical HorizontalRockingTorsion

K = 4GR
K _ 8GR

8GR3
K- 16GR3K=--v 1- v

h-
r 3(I-V)
1-

2-y
3

(b) Rigid Rectangular Foundations on the
Surface of an Elastic Half Space

Equations (4) and (5) can be systematically used to
calculate settlements of any point on the surface.
The settlement of the center of the rectangular

region in particular can be determined by noting
that this point can be considered as the corner of
the four equal rectangles of side lengths B/2 and
Ll2 making up the bigger rectangle. This yields for
the center settlement

(s ) - 4[ B 1- y2 I ] - (S)e flex, center - q 2 2E r - 2 e flex, comer

(6)

As in the case of the circular foundation, the

problem of an ideally flexible rectangular
foundation was solved by integrating Boussinesq's
solution for a point load.

For the special case of a square footing of side
length Band LIB =1, Eq. (5) yields Ir= 1.123 so that

(8)(Kv) = 2.53GL
e,recl (1- Y)I r

Noting that the average settlement of the loaded
region is 85% of the settlement of the center, and
that the uniform settlement of the rigid foundation
is 7% less than the average settlement of the
flexible foundation as in the case of the circular

foundation, one obtains for the settlement of the
rigid rectangular foundation

1 y2

(SJ;gid = O.79qBTlr (7)

This is now equated to the vertical displacement of
the model foundation of Fig. 4(b) supported by a
vertical spring under the action of the same
loading. With the introduction of the shear
modulus, this results in

x

E,v

B

(b)

(a)

~

The equivalent radius for the vertical displacement
of the square footing is obtained by equating areas

to getR=Bj.j;;. Inserting this in Eq. (4), one
obtains

It is worth recalling here that, in the times
preceding the availability of rigorous solutions for
rectangular footings, it was a common practice to
make use of the solutions of circular footings for
footings of other shapes, where an equivalent
radius is used in Eq. (4). It is of interest to compare
such an approximate expression with the rigorous
solution.

Figure 2 (a) An ideally flexible rectangular
footing on the surface of an elastic half
space;
(b) A model of the rectangular footing
supported by a linear spring

As cited by Das [2], the problem of vertical
settlement of points below the corners of a loaded

rectangular region of plan proportion BxL as shown
in Fig. 2 was solved by Han (1966), who presented
his solution in a closed form as

(S) - BI-y2I (4)
e jlex.comer - q ~ r

The dimensionless influence factor Ir is given by

(KJ _ 2.25GB
e,square -( .-1-v)

(9)
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Expressions for the spring coefficients of the
remaining degrees of freedom of rectangular
foundations that are obtained in a similar manner

are provided in Table 2.

Presumably with the intention of avoiding the
inconvenience in using the lengthy logarithmic
expressions of Eq. (6) for calculating In Pais and
Kausel [3) recently proposed the following
relatively simpler, but approximate, expression for
the vertical spring coefficient of rigid rectangular
foundations:

(c) Springs for More General Cases of Elastic
Soil Deformation

Spring coefficients for circular foundations
embedded a depth H in a flexible soil layer of
thickness D that overlies a rigid half space are
presented in Table 3. The elastic parameters with
the subscript I refer to the upper elastic layer.
Table 4 provides static spring coefficients for
rectangular footings embedded a depth H in an
elastic half space. It is believed that these formulas
could be of importance in solving practical
problems.

Additional formulas for spring coefficients of
foundations of arbitrary shape are provided recently
by Gazetas [5,6]. However, they are much more
approxinlate than those provided here for circular
and rectangular shapes.

A much more general problem of practical interest
is the case of a foundation of arbitrary shape placed
below the surface of a layered soil formation.
Following the development of the relatively simple
spring coefficients like those provided in the
preceding sections, numerous studies have been
conducted that considered various combinations of

influencing factors like embedment depth, soil
layering, and foundatIon shape. Valuable results
are obtained, but are found scattered in various
technical papers of journals and conference
proceedings, which are difficult to access. Some
efforts have been made to compile them [3,4,5,6].

(10)

(11)
(K,)..red '" 2(~~v)[3.1(L/BY/4 +1.6]

(K ) 2.26GB
v e,square ~ (1- v)

This is practically the same as the rigorous solution
of Eq. (9). The same cannot, however, be
concluded for rectangles of other side proportions
in general, because the difference can become
significant with increasing side ratios.

For a square footing, this reduces to

(K ) '" 2.35GB . (12)
'e,recr (I-v)

In contrast to Eq. (10), this is in discrepancy with
the rigorous solution of Eq. (9) by about 4.4%.
Larger discrepancies can be expected for rectangles
of larger side ratios. However, errors of such an
order may not be significant as far as the form of
Eq. (11) is found more convenient in practical use.

Table 2: Static spring coefficients for a rigid rectangular foundation on the surface of an elastic half space [3]

Vertical spring
(K ) = ~~.I(LjB)075 + 16]

" 2(1- v)Torsional spring (K1). =G:' k25(L/ B )245 + 4.06]

Horizontal spring

Short direction (x)
(K) =~[6.8(L/Bf65+2.4]x e 2(2-v)Long direction (y) ( ) () 0.8GB (L 1)Ky. = Kx.+ 2(2-V) B-

Rocking spring

Around x-axis

(K,.,J. = 8~~3V)~·2(LjBY/4+0.8]

Around y-axis

OB3 ~ ]
(K ) =-(-) .73(LjBr+0.27

rye 81-v
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Table 3: Static spring coefficients for a rigid circular foundation embedded in an elastic stratum
over a rigid half space [4]

Direction Spring coefficient for H/R<2 and H/D~O.5
Vertical 40 R ( H )[ H HI](xv) =R[I+1.28(R/D) 1+- 1.85-0.28- ( )

, I-vl 2R R D I-HIDHorizontal (K) = 8G]R (l+~ Xl + 2H)(I+ 5H)h, 2 - VI 2D 3R 4DRocking (x) ~ 8GjR3 (1+~XI+ 2HX1+ 0.7H)r, 3(1- v]) 6D R DTorsional (K,). = 16~]R3 (1+ 2.~H)

Coupled horizontal-rocking

(Kkht =OAH(Kh)emb

Table 4: Static spring coefficients for a rigid rectangular foundation embedded in an elastic
half space [3]

Vertical

(Kv).mb = (Kv)'Uif[l +( 0.25+ ~:~ X ~r]
Horizontal

(Xh)omb = (Xh)'Uif[1 + (0.33 + 1~·~;B X~r]
Torsion

(Kt )emb= (xt Lf[1 + (1.3 + ~;~ J( ~r]
Rocking

(xrxl.mb = (x" Lif[1 + ~ +( 0.35~·(LIB r X ~r]

X r]

. H 1.6 H

(KryLb =(Kr)JUrJ[I+B+( 0.35+L/B B

Coupled Horizontal-rocking

(Krx,hLb = ~ (Krx,hLr;
(Kry,h Lb~ (Kry,hLr

15

2. Vertical Springs for Long-term Soil
Deformability

(a) A Vertical Spring to Account for Primary
Consolidation Settlement

The consolidation settlement of a compressible
stratum is commonly estimated on the basis of one­
dimensional consolidation test results, which
among others yield data on void ratio and effective
vertical stresses. One form of presenting these data
is in form of plots of void ratio versus effective
vertical stress on a natural or semi-logarithmic
scale.

On the basis of the plot on a natural scale, the
primary consolidation settlement, sc, of a
compressible stratum of thickness H under an
average superimposed vertical stress of ,1p

reaching the layer can be easily derived and is
given by

s = m HAn = Hf,p (13)
c v'-'Y Ec

where, mv = av/(l + eo) is the coefficient of

volume compressibility; av is the coefficient of
compressibility; Ec is the modulus of
compressibility, and eo is the in-situ void ratio of
the compressible stratum.

Equatirlg this settlement with the deformation of
the spring of the model foundation subjected to the
same loading, one can readily determine the
following expression for the spring coefficient:

K = AfEc (14)
P aH(t:,pjq)

where, Afis the plan area of the foundation; lJp/q is
the fraction of the average superimposed vertical
effective pressure reaching the compressible
stratum; q is the contact pressure; and a is the
degree of consolidation in decimals.

Journal of EEA, Vol. 24, 2007
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3. Equivalent Spring Coefficient for the
Vertical Direction

In cases where the secondary settlement is found
insignificant, the two springs for the immediate and
primary consolidation settlements alone may be
used.

The equivalent spring coefficient in static analysis
for the vertical degree of freedom is determined
readily from linear superposition of the component
settlements that yields

(17)

(19)

(18)

K _ P _ Afq
, - -;: - -ca-J-{ ~lo-g~~tI-t p~)

This spring is attached in series with the springs for
the primary consolidation settlement and for the
inlmediate settlement in the vertical direction. The

combination of the springs is presented in the
following section.

] 1 1 1--=-+-+­
K",q K, Kc K,

which results in

K _ K,KcK,
veq - I
. KcK, +K,K, +K,Kc

(15)

Alternatively, the primary consolidation settlement
can be estimated on the basis of the semi­

logarthmic plot to obtain different expressions for
normally consolidated and overconsolidated soils,
the details of which are omitted. The spring
coefficient, Kp, is then determined from

Sc

Equation (14) is easier to use in that it only
demands prior estimation of the foundation size,
similar to the immediate-deformation case of the

previous section, and the fraction of the effective
pressure reaching the compressible stratum.

(b) A Vertical Spring to Account for Secondary
Consolidation Settlement

The spring so established can be attached in series
with the spring for the immediate soil settlement in
the vertical direction. This will be discussed in a

later section. The spring coefficients for the
immediate/elastic deformation in the remaining
degrees of freedom remain unaltered because of the
inherent assumption of one-dimensional volume
change in one-dimensional consolidation theory.

Secondary consolidation settlement, also known as
creep, is a result of further rearrangement of the
soil grains and compression ofthe individual grains
under sustained loading after the end of the primary
consolidation. It has importance in cohesive soils
with some organic content.

Creep (secondary) settlement, s" is estimated from
a relation derived from the plot of dial reading
versus log (t), which is routinely prepared as part of
consolidation test reports. This relation is given by

It is worth reminding that with the use of such
springs under each rigid foundation element, the
settlement is directly output by most commercial
software. If that is not the case, the component
settlements of each foundation element are easily
determined from the vertical reaction forces, P, and
the spring constants without the need to resort to
the settlement equations. Thus,

(16) Similarly, the tilting, 0, and the horizontal rotation,

~, of each foundation are determined from

In Eq. (16), Ca is the coefficient of secondary
consolidation determined as the slope of the bottom
straight portion of the plot; t is the time at which
the secondary settlement or the corresponding

structural response is considered; and tp is the time
at the end of prinlary consolidation.

It is reasonable to base the determination of the

coefficient of secondary settlement on the plot for
the load increment corresponding to the total of the
overburden plus the anticipated superimposed
pressure.

The spring coefficient obtained in an analogous
manner to the previous cases becomes then

(21)

where Mr and Mt are the rocking and torsional
moments, respectively.

It is worth pointing out at this junction that all
spring coefficients both in the present and the
previous sections are expressed in terms of the
foundation size, which is not yet known at the
analysis stage. Its prior estimation is necessary in
order to quantify the spring coefficients. This,
however, is not a difficult task if commercial
software is used for the structural analysis. The
foundation reaction forces of the fixed-base model
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-------------------------------------------

The conventional model of the frame with fixed

bases was analyzed using SAP 2000. The resulting
axial force, shear force, and bending-moment
distributions are given in Fig. 7.

In order to make use of the formulas provided in
Table 3 for circular foundations on an elastic layer
underlain by a rigid formation, equivale!lt radii are
detemlined. Empirical relations are employed to
estimate the elastic parameters of the upper flexible
soil layer [2]. This resulted in E=120 tv1Pa and
v=0.313, and the shear modulus is calculated from
these parameters as G=45.7 tv1Pa.

7":

///~~~ GWT ///~~~

w=28%; WL = 50%; G=2.72;

cu=60kN/m2; cc=0.36; y=17.8 kN/m3

n
Idealized stratification of the soil
formation

The bearing capacity of the footings is determined
analytically as 160 kPa for the undrained condition
providing for a safety factor of 3. The reaction
forces and moments at the bases of the fixed-base

model are employed to estimate the footing
proportions, which are needed in the determination
of the foundation spring coefficients for the
flexible-base model. Since the moments are small

compared to the vertical reaction forces, the
foundations are proportioned as square footings.
Accordingly, the left footing (Fl) becomes 2m by
2m, the middle footing (F2) 2.45m by 2.45m, and
the right footing (F3) l.35m by l.35m.

A
Figure 6

In order to illustrate the use of the spring fOffimlas

presented in the foregoing sections, an exanlple of
a simple two-dimensional, two-story and two-bay
building frame is considered as shown in Fig. 5(a).
Both stories are 4 meters high. The left bay is 7.5
meters and the right bay 4.5 meters wide. The
footings of the building are all to be embedded 2
meters into a normally consolidated clay layer,
which overlies a non-horizontal rigid formation
sloping at 1 vertical to 6 horizontal. The ground
water table is at 2 meters below the ground surface.
The characteristics of the compressible clay layer
and an idealization of the stratification are as

shown in Fig. 6.

ILLUSTRATION

(a)

~ ~

~t:':=~-:::J;=:::'::I::::':::J::::.:.--..:r::::!~::::::C:::;:::::':;j.::::r:::.

fLLDfIIL
1::::::[=:1:::::::::r::1::0::::£::'''''''

~'x

of the structure analyzed in advance can be used for
this purpose. If need be, the actual sizes can be
adjusted later on based on the reaction forces of the
flexible-base model of the structure.

I~mmmm:mlm_mmm

t · ··········..··· ·· ·l····· · ·..·

fy~t f1":A;. h~T

(b)

A summary of the calculated spring constants for
the three degrees of freedom of each footing is
provided in Table E 1.

Table E I: Calculated spring constants for the three
footings for elastic deformation

Footing VerticalHorizontalRocking
Spring

SpringSpring
(MN/m)

(MN/m)(MNm)
Fl

943542900

F2

12966871719
F3

728448799

Figure 5 (a) The fixed-base frame with the loading;
(b) The flexible-base frame
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Figure 7 Internal forces and moments in the fixed-base model: (a) axial force; (b) shear force;
(c) bending moment

With these springs introduced at the bases, the new
flexible-base model is analyzed. The differences
between the internal forces and moments of the
frame so calculated and those of the fixed-base

model presented in Fig. 7 are of little practical
significance so that they are not presented here.
The displacements and rotations of the footings are
summarized in Table E2. These quantities are also
quite small. This is to be expected because the
influence of elastic soil-structure interaction on

such flexible, low-rise, and light structures is
normally insignificant.

Table E2: Displacements and rotations of the
footings - elastic deformation case

VerticalHorizontalRotation

Footing
displacementDisplacement(radians)

(mm)
(mm)

F1

-0.610-0.068-2.lxl0')

F2

-0.7290.0349.95xl0'o

F3

-0.4770.0311.44xl0')

Next, the case of end of primary consolidation is
considered. The coefficient of the additional

vertical spring is computed using Eq. (15) with ex,

taken as unity for 100% consolidation. The average
superimposed vertical stress is calculated by taking
into account the difference in the thickness of the

Journal of EEA, VoL 24, 2007



The Use of Springs in Static Analysis of Structures 19

compressible layer under each footing. The
modulus of compressibility is easily calculated
from the given information. Finally, the spring
coefficients for end of primary consolidation are
readily calculated and presented in Table E3. Note
that these springs are significantly softer than those
for the immediate deformation case.

Table E3: Calculated spring constants for the three
footings for end of primary consolidation

Spring forEffective

Footing

prrmarysprmg
consolidation

constant
(kN/m)

(kN/m)
Fl

28232815
F2

55395515
F3

31663152

The effective spring constants in the vertical
direction for the three footings are also calculated
in accordance with Eq. (22) and given in the same
table. It is important to note that the effective
springs became very soft due to the consideration
of the consolidation settlement of the footings
(compare with values in Table El).

The flexible-base frame is analyzed once again
with the introduction of the modified vertical

springs keeping the rest of the springs in the other
degrees of freedom unaltered. The results of the
analysis are given in Fig. 8 together with the
deformed shape of the frame. The displacements
and rotations of the footings are provided in Table
E4.

............................................... .1. .

..._..__._m_~-- ..._._·_.._· ..--+..·..·_··-··~ ....
1"

1

Figure 8 Internal forces and moments in the flexible-base model with springs for consolidation settlement: (a)
axial force; (b) shear force; (c) bending moment; (d) deformed shape
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Table E4: Displacements and rotations of the
footings - consolidation settlement case

VerticalHorizontalRotation

Footing
displacementDisplaq:ment(radians)

(mm)
(mm)

Fl

-203.78-0.088-1.293xlO'4

F2

-161.070.048-4.l6xlO')

F3

-128.620.034-9.83xlO')

The following observations can be made from these
results in comparison with those of the fixed-base
model given in Fig. 5.

1. Generally, there is a modest difference in the
magnitudes of the axial forces of the columns.
The difference in axial forces is largest at the
base columns.

Il. Whereas the vertical reaction forces at the left

and middle footings decreased notably, the
reaction force increased at the right footing,
where the consolidation settlement is least.

Ill. The shear forces in the columns increase

consistently with the introduction of the
consolidation springs.

IV. As a general trend, an increase in bending
moments is observed with the introduction of

the consolidation spring. This is most noted in
the base columns and particularly at their
junctions with the footings, where the increase
is a minimum of about 275%. This has a

practical significance in the proportioning of
both the base columns and the footings.

v. Notable increases in the bending moments at
the outer supports of the ground beams are also
observed. Furthermore, the locations of the
maximum span moments shifted significantly
in these beams.

Vi. The settlements of the footings are very
significant. The differential settlements are in
the order of 1/176 and 1/136 between Fl and

F2 and between F2 and F3, respectively,
demanding revision of the proportions of the
footings.

Generally, the influence of the consolidation
springs appears to be much more significant than
that of the elastic-deformation springs, at least in
this example.

It is to be noted that the structure considered in this

example is a simple two-story, relatively flexible
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frame subjected to gravity loading only. It can be
expected that the influence of the flexible elements
at the bases would be much more significant in
taller and rigid structures involving more rigid
structural elements like shear walls and subjected
to lateral loads in addition to gravity loads. A
parametric study looking into this matter is
presented in a companion paper, which considers
buildings of different height and structural systems
subjected to pseudo-static lateral earthquake loads.

CONCLUSIONS

The theoretical background of spring formulas that
account for the immediate deformation of soils is

presented and sets of these formulas are provided
for use in practical modeling of structures founded
on deformable soils. Additional spring formulas
that account for primary and secondary
consolidation are derived. It is shown that these

latter springs can be joined in series with those for
immediate soil deformation. The application of the
springs is illustrated using a simple building frame
subjected to gravity loads only. The internal forces
in the structural members with and without flexible
base elements show notable differences.

Particularly, tlle absolute and differential
settlements are found to be more significant
suggesting that such flexible base elements could
even be more important in taller and more rigid
structures subjected to lateral loads. Especially, the
influence of the consolidation springs is worth
noting. The use of these springs in models of
structures is a straightforward operation and is
commonly supported by features of available
commercial software. Their use in practical
modeling of structures is recommended.
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