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ABSTRACT

The behavioral responses of sectorial shells as
related to the number of modes and certain
geometric properties of the shell have been studied.
By varying certain dimensionless geometric
properties of the shell and considering a series of
undamped vibration modes, the influences of these
properties on displacements, edge reactions,
bending moments and other responses have been
plotted and relevant conclusions reached.

Two very important observations from this work
are that, unlike in conventional regular building
structures where the first mode is dominant in
influencing various dynamic response behaviors
and high-order modes affect less, the principal
mode in sectorial shells fails to influence these
responses while higher modes contribute
progressively and significantly to those effects.

INTRODUCTION

TIle behavior of shell-type structures under a
variety 0 f dynami c loads, such as seismic, blast and
wind loads among others, is a phenomenon of
interest in view of the relatively large sizes of such
structures and the nature of forces they are usually
subjected to in practice. Any linearly elastic
continuum will have well-defined natural
frequencies and vibration modes that can be
investigated by considering the mass of the body
and its stiffness. Sectorial shells, otherwise known
as gronoids, are among reasonably complicated
continuum structural systems that call for extensive
modeling requirements in order to predict their
response behavior under dynamic loads. The nature
of discontinuity in their geometry layout makes
them unique among various shell-type structures.
Closed analytic solution in this regard is
particularly demanding, if not impossible, as their
response behavior, as in any general shell-type
structures, require determination of all types of
structural responses including those emanating
from membrane or in-plane deformations. In this
respect, therefore, a sound approximate numerical
approach to their solution - the finite elements
method - plays a significant role in facilitating the

study of the various dynamic behaviors of such
shell structures.

In recent years analysis of static and dynamic
problems has been the focus of intense research
efforts mainly due to the emphasis placed by
manufacturers, contractors and certifying agencies
on realistic modeling that call for accurate analysis
of critical structural components [1]. This endeavor
has prompted the development of versatile and
powerful finite element descretization methods as
well as improved numerical methods and
programming techniques for linear and non-linear
static and dynamic analysis of structures [2, 3,4].

An examination of the static load-deflection
characteristic and dynamic response time histories
of a number of simple structural systems reveals
that they are generally not more complicated than
those of presumably complex structures [5]. The
large number of degrees of freedom in large-scale
structures is often dictated by their topology rather
than by the expected complexity of their behavior.
This fact has been recognized and techniques for
reducing the degrees of freedom have long been
proposed in vibration analysis and automated
optimum design.

'The objective of this paper is to assess the
influence of the profile geometry of sectorial shells
given by a dimensionless ratio of overall rise hI to
the vault rise (or depression) hz as shown in Fig. 1
on the various structural dynamic response
behavior with due consideration to the number of
vibration modes in the process. In order to
minimize the number of variables, the plan
dimension of the shell has been kept constant.

GEOMETRY OF SECTORIAL SHELLS AND
THEIR DYNAMIC ANALYSIS MODELS

Sectorial shells represent types of structures where
shells are combined to form a roof covering on a
polygonal area. They are usually employed to
cover large space without employing additional
stiffening elements. If the base of the structure is a
uniform polygon, each sector of the shell will cover
an isosceles triangular area (Fig. la). Each lobe of a
sectorial shell can assume various geometric shapes
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(lb)

whose middle surfaces may generally be expressed
as:

(la)

The most frequently employed shape employed in
such shells is a second-order curve. Accordingly,
the middle surface of a second-order sectorial shell
may be represented by the following general form:

x2 y2

Z '" h17+ h2!;2
where hI, h2 are parameters as shown in Fig. I
whose values will be varied in the parametric
analysis and hi> O. This equation represents an
elliptic paraboloid if h2 is positive (Fig. Ib), a
parabolic cylinder if h2 = 0 (Fig. lc), a hyperbolic
paraboloid if h2 is negative (Fig. I d).

TIle sectors of the shell are supported only along
their lines of intersections by arched girders to
which the actions of the sectors, in the form of
tangential shear forces, are transmitted. It should
be mentioned here that such shells are not

supported along their individual outer edges.

~-th
(b I hz

~
(rl

Figure I Gemetry of sectorial

The geometry, stiffness and mass distribution of
sectorial shells put them into a special class of
symmetric structures where modal analysis will
take advantage of this symmetry property in
extracting the desired mode shapes and
corresponding structural response values such as
stresses and displacements. When a structure has
one or more planes of symmetry, the natural mode
shapes of vibration all will be either symmetric or
antisymmetric with respect to these planes [1, 6]. In
such types of systems, one also needs only analyze
a portion of the original structure. The reduction to
a smaller sized problem may be accomplished by
introducing artificial restraints at joints located
along the planes of symmetry. In addition, the
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relevant properties of members that lie in those
planes must be altered. Thus, depending on the
number of planes of symmetry, only half, a quarter
or even less portion of the structure may need only
to be analyzed.

Sectorial shells generally exhibit multiple planes of
symmetry and the present work makes advantage
of this property to reduce problem size and yet
increase the number of nodal points in the
analytical model for improved approximating
quality of the finite element model. When a
vibration mode is symmetric with respect to a plane
of structural symmetry, the nodal displacements,
strains, stresses and reactions as well as other
structural responses will also be symmetric with
respect to the same plane. To this goal, nodal points
located on a plane of symmetry must be restrained
in such a marmer that the structure deforms

symmetrically with respect to that plane. In
general, the component of nodal translation normal
to the plane of symmetry and the components of
rotational displacement in the plane must be
prevented in order to enforce a symmetric pattern
of deformation.

If a vibration mode is antisymmetric with respect to
a plane of structural symmetry, the nodal
displacements, strains, stresses and reactions will
also be antisymmetric with respect to the same
plane. The components of nodal translations in the
plane of symmetry and the component of rotation
normal to the plane must be prevented to give a
pattern of deformation that is antisymmetric with
respect to the plane.

If an element of a discretized continuum lies along
a plane of symmetry, we must divide its relevant
rigidities entering calculations by two in order to
cut the structure into equal parts. In the case where
a finite element is normal to and bisected by a
plane of symmetry, one must divide it into equal
parts and introduce new nodes on the bisecting
plane that are restrained as noted earlier. These
modeling concepts will be implemented in the
numerical experience for the problem at hand.

Continuum structures, such as sectorial shells,
subjected to dynamic loads respond with a
combination of rigid-body and flexible-body
motion. If a structure is analyzed as an elastic
continuum, its flexible-body response to dynamic
actions would consist of the sum of an infinite
number of vibrational motions. However, if the
structure is discretized by the finite number, the
resulting analytical model will have only a finite
number of nodal degrees of freedom and a finite
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(5)

number of natural modes of vibration. Therefore,

such a model has only a finite vibration modes and

motions that contribute to its dynamic response.

Structural continua that are subjected to arbitrary

dynamic loads become extremely difficult, if not
impossible, to analyze in their original physical
coordinates. To alleviate such shortcomings, we
can use the natural modes of vibrations as

generalized coordinates as a result of which the
equations of undamped motion, Eq. (2), become
uncoupled [3, 4]. In these coordinates, each
equation may be solved as if it pertained to a
system with only one degree of freedom
Superposition of these single-degree-of-freedom
results is accomplished through a transformation
back to the original coordinates. By this means, one
can evaluate time-varying nodal displacements,
internal stresses, and support reactions for the
established analytical model.

An important advantage of the normal-mode
method is that only the significant modal responses
need be included in a dynamic analysis thereby
making the method more efficient than other
available methods such as the

numerical-integration methods [4]. The other
modal responses may often be omitted without
much loss of accuracy.

Modal superposition technique is a very effective
reduction method for linear dynamic problem when
only few vibration modes are exited by the external
loading. The basis vector in this technique consists
of a limited number of vibration mode shapes.
Several studies have been made on improving the

accuracy and efficiency of modal superposition
technique in linear problems [1].

The semi-discrete form of the governing equation

for undamped, linear structural system at time t can
be written in the following form:

where

cPi. is the vector of nodal amplitudes or mode

shapes of the i-mode

OJi is the circular frequency of the i-th mode

cd denotes the phase angle
n represents the degree of freedom

By differentiating Eq. (3) twice with respect to the
time variable t, one finds:

Uj (t)",-co; <1\ sin (coit +CXj) (4)

Substitution ofEqs. (3) and (4) into Eq. (2) allows

cancellation ofthe sin( co; t + cxJ term,
leaving

(K-co;M)<I>; ",0

Equation (5) exhibits the condition in which the
time variable is separated from that of space and, as
a result, leaves a set of n homogeneous algebraic

equations. This equation has also got the form of an
algebraic eigenvalue problem [7].

From the theory of homogenous algebraic

equations [8], non-trivial solutions exist only if the
determinant of the coefficient matrix vanishes.

Thus,

(6)

Expansion of this determinant produces a
polynomial of order n called the characteristic
equation. When the system is positive definite, n
real and distinct eigenvalues 0); will be obtained
as the roots of the polynomiaL

The n roots of this polynomial are the characteristic

values or eigenvalues. Substitution of these roots

(one at a time) into the homogeneous equations,
Eq. (4), produces the characteristic vectors, or

eigenvectors rtJ;, within arbitrary constants.

Equation (2) has got a known solution that may be
satisfied by:

where M and K are, respectively, the structural
mass and stiffness matrices while Vet) and

U(t) represent vectors of nodal displacements and
accelerations, respectively. pet) is the vector of
externally applied loads.

Uj (t) = <1> i sin(cvJ + ai)

(2)

i = 1,2, ... , n

(3)

The choice of an appropriate method for the

computation of eigenvectors depends on a number
of criteria (4] among which the number of degrees
of freedom and the number of required eigenvalues
are dominant. In the latter case, Chopra [8]

presented the number of modes to be considered in
relation to minimization of error-propagation in
modal responses.

With a specification of the initial conditions, Eq.(2)
can be integrated to produce the time-history
response of the structure. A wide variety of explicit
and implicit techniques have been proposed for
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where

M = (/jT M(/j

K = if>T Kif>

pet) = if>T pet)

If the Lagrangian displacement formulation is used,
the vector of nodal displacement is expressed as a
linear combination of the lowest vibration modes

[9] as follows:

The computational cost of extracting the vibration

modes can be reduced by applying one of the
condensation schemes-mass condensation

method [3, 10] - to discrete system prior to
extracting the eigenvectors.

The effectiveness of the modal superposition
techniques in dynamic problem depends on three
major parameters; these are the number of vibration

modes required to accurately simulate the response,
the frequency of updating vibration modes, and the
efficiency of the algorithms used in extracting the
initial eigenmodes. The number of vibration modes

required depends on the structural properties of the
system as well as on the spatial distribution and
frequency content of the loading [8].

The solution of three-dimensional continuum

structural systems, such as sectorial shells, that are
subjected to dynamic actions is best-handled
universally by the finite elements method. The
finite element method enables one to convert a

dynamic problem with an infinite number of
degrees of freedom to one with a manageable,
finite number in order to simplify the solution
process. The basic concept in the method is to
divide a continuum into sub-regions having simpler
geometries than the original problem. Nodes on
each such sub-region, or finite element, are the key
points that control the behavior of the element. By
making the displacements and other behavioral
responses such as stresses, velocities and
accelerations at any point in an element dependant
on those at the nodes, one need only write a finite
number of differential equations of motion for such
nodes. For good accuracy in the solution, the
number of nodal degrees of freedom usually must
be fairly large; and the details of element

formulations for closed-form analytical solution are
rather complicated.

From the homogeneous equations of motion, one
can then perform a vibration analysis of the
sectorial shell. This type of analysis consists of
finding undamped frequencies and corresponding
mode shapes for the discretized analytical model of

The primary objectives of dynamic analysis by
fmite elements are, therefore, to calculate
approximately the responses at such nodes or at
other selected points for subsequent interpolation at
all desired points in the structure. Making use of
the underlying concepts for the various
dependencies, the differential equations of motion
for the nodes of the discretized continuum, such as

sectorial shells, can be developed by assembling
the finite element contributions

(8)

(8)

11

U(t)=<I>l1(t)= L¢i Tli(t)
1~1

integrating Eq. (2) and obtaining the response time­
histories of the structure [4]. However, the

computational effort involved in applying these
techniques to large-scale continuum structures such
as multiple-lobed sectorial shell can be quite
substantiaL Therefore, the reduction of degrees of

freedom in dynamic problems is an important
approach for practical application of analysis
methods.

Due to the orthogonality condition, both the and
are K diagonal matrices. The total response

ll(t) can be obtained by superposing of the
response due to initial conditions alone and
response due to the excitation alone.

The first step in a mode superposition solution is to
obtain the natural frequencies and natural modes of
the system. The important topic of truncation that
makes use of fewer than n modes could be studied
here.

where the column matrix c):> are the basis vectors,
otherwise known as the modal matrix, which

consists of the lowest vibration modes and l1(t)
are the vector of generalized coordinates 17;·

'The natural frequencies and modes satisfy Eq. (5);
the semi-discrete governing equation of the

structure, Eq. (2), is then approximated by the
following reduced system of ordinary differential
equation:

The use of modal methods in linear problems

appears, at a first glance, to conform to the well
known fact that superposition principles are

applicable to the system. However, the number of
modes to be considered in predicting the response
of the structure has got considerable influence on

the behavior values to be identified [8].
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the gronoids. These and related findings are
important and very useful to the study of the
dynamic behavior of such systems and are essential
for the normal-mode method of dynamic analysis
[1,4].

The principle of virtual work can be used to
develop the finite element formulation of the
dynamics of sectorial shells [1,2). Such equations
include energy-equivalent stiffnesses, masses, and
nodal loads for a typical element. Once these
relationships are developed, one can implement the
principle of virtual work to establish the various
parameters in the equation of motion such that:

MD(t)+KU(t)=P(t)
in which:

K= SvBTEBdV

M = SvpfT fdV

and
B = strain-clisplacement transformation

matrix
E = stress-strain transformation matrix

f = nodal-to-generic displacement
transformation matrix

p = material density
pet) = vector of nodal loads.

The theoretical background on closed-form
analytical solutions of discretized-mass system has
bee presented by several authors [1, 2, 11); these
will form the basis for the parametric analysis
presented in this paper.

The techniques for reducing the degrees of freedom
are referred to as reduction methods [1]. The
essence of reduction methods for linear analysis is
linli.ted to the deformation modes of the descritized
structure to some known modes which are
considerably fewer in number than the number of
the degrees of freedom in the original descritized
system Due to the high potential of the reduction
method for linear analysis, increasing interest has
recently been shown in the application of these
methods to linear and non linear dynamic
problems.

The principles presented so far will now be applied
to study the dynamic behavioral responses of a
four-lobe sectorial shell. The influence of the
number 0f modes on these responses by varying the
parameter hjh1 as shown in Fig. 1 will be studied.

PARAMETRIC STIJDIES

Numerical studies which demonstrate the influence
of the mode on the response computation of the
sectorial shell are presented in this section for the
solution of modal superposition method.

A series of sectorial-shell geometries [6) with
variable depth ratios of the form

have been examined. The roof of the sectorial shell
consists of a cylindrical vault composed of thin
self-supporting double shells with simple
curvature, crossing orthogonally with generating
lines parallel to the diagonal of the base square.
The effect of variable vault rise h2 to depth hI ratio
on various structural responses is evaluated.

The structure in the shape of a double shell with
shell units fanning out from the support may be
imagined to be composed of a series of adjacent
arches with triangular plan.

For the purpose of investigation of the dynamic
response of the sectorial shell, a square base width
of 30.0x30.0m (a = b = 30m), rise of vault,
Cl = lAm fixed at four legs were considered. A
series of ratios of hjh1 in the range of 0.02 to 0.2
has been employed and all analytical models have
been processed with STAADlPro [11). Due to
symmetry, only one fourth of the sectorial shell has
been processed using both triangular and
quadrilateral isopararnetric element shown in
Fig. 2. Appropriate boundary conditions,
accounting for structural symmetry, have been
implemented in the analysis model.

Langrangian interpolation functions were used to
approximate each of the displacement and rotation
components and a total of 3720 shell isopararnetric
elements and 22302 displacements degrees of
freedom were considered.

The material of the shell structure has linear elastic

properties with density 24kN/m3, Young's modulus
29GPa and Poisson's ratio of 0.2.
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The model has been subjected to spectral cases of
the load defmed in EBCS-8 [12] for an arbitrarily
selected soil type B. The ordinates of the response
spectrum have been directly supplied to the
implemented program [11] and the analysis was
conducted to determine the overall response of the
sectorial shell for various combinations of mode
shapes. Accordingly, the variations of spectral
reaction and bending moment at the edges of the
shell with reference to the number of modes, h2/h)

ratios and stitfuesses have been investigated. The
results of these analyses are presented subsequently
in Fig. 3 to Fig. 7.

Increasing the number of modes to be accounted
for, the structural response has generally shown
tremendous variations as a function of the
parameters considered. Again, tllis is contrary to
what is generally observed in regular frame-type
structures where only the first few modes dominate
the structural response. The number of modes
required to strictly simulate the actual response
behavior of the system bending stresses as well as
edge moments under a variety of stiffening and
edge conditions is about 50 modes while to analyze
the reaction, it generally required more than 50
modes.

The various behavioral responses as related to the
first mode are worth assessing. In all these cases,
the corresponding structural responses are barely
affected and remain insignificant under the first
mode of vibration. This is because the first mode of
vibrat.ionwas not appreciably influenced in view of
less mass participation in the process. This is a very
important observation as it is not the case, for
example, with frame-type st.mctures where the first
mode is dominant in many cases.

RESULTS AND DISCUSSION

Analysis of the various response behaviors indicate
that there are generally two-way variation since
they are influenced both by the number of modes
and h2/h 1 parameter. The degrees to which tile
responses are affected by both variables differ
significantly as can be seen from Figs. 3
through Fig. 7. For instance, edge stresses and
corresponding edge moments, Fig.3 and Fig. 5,
respectively, indicate that with increased h2/h)

parameter, the values tend to converge to specific
values as the number of modes taken into account
increases. The increasing arching effect with h2/hj

ratio is responsible for the convergence of both
response behaviors.

I

t-

2b

--t-
!

.

//
2a

I•
I

Figure 2 Analysis model
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Increased number of modes generally results in
elevated behavioral responses. However, as can be
noted from Fig. 3 and Fig. 5, certain responses tend
to be unaffected by the number of modes especially
at the higher ranges.

participation. Since the geometric nature of the
sectorial shell considered is symmetrical, the first
mode of vibration of this system is also
symmetrical about its crown and, thus, the response
leads to contribute to tensional effects, however
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E 0.0045 i 0.003
~

~

0.002

0.0010.0

I I

0
20

-0.001

40 60

---r--

•• t.t .••.•.•.

number of modes

Figure 7 Crown deformation due to spectral load

CONCLUDING REMARKS

Various structural response behaviors of the
sectorial shell as influenced by the number of
modes considered and shell geometry have been
studied. A very important observation from this
work is that, unlike in conventional regular
building structures where the first mode is
dominant in influencing the dynamic response
behavior, it can be seen that the edge axial stress,
spectral reaction, edge moment and edge stresses of
sectorial shells, the contribution of the tirst mode ­
which is supposed to be the principal mode - is
insigniticant.

In the dynamic analysis of such systems, the
behavior of the mode of vibration depends on the
geometric nature of the structure and, thus, the
mode varies with the percentage of the total mass

little that might be, rather than to compressive
ones. This shows that the total mass of the system
participates to influence the rest of the parameters
at the later vibration modes rather than in the
earlier ones.
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