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The other stress term, which is the incremental linear
stress term o" is determined from the corresponding
linear strain components, which constitute the first
five terms of Eq. (34), by making use of appropriate
constitutive relations. The remaining terms of Eq.
(2) are the linear and nonlinear displacement terms
and can be approximated from Eq. (1) by using, for
convenience, the Taylor's series expansions of the
trigonometric terms.

After substituting into Eq. (2} all the relevant
quantities, and through variational treatment of the
results, one oblains the following goveming
differential {equilibrium) equations;

EAu" = p, (5a)
E!_\}v,_"“ SN (-, + Mzo)ﬁf’“ =P (5b)
Elw" - Nw," + (WN - M = p, ¢)

EI o™ - Gl¢" + (N + MW, + 0N - M,
SN BMT + BME + B M)
+ [p_ynt'lp - }’:J + p:o(zp - Zs)]¢ = CT (Sd)

Further, the associated boundary conditions at x = 0
andx = L {k = iand & = j) are;

ur.' = urk
or n[EAu'] = F, (6a)
"'s = “sk

of m{-ELyv,"+ Nv + &N -MJd| = F,  (6h)

_v;lz ‘vtk
or n [-ELy," -M?¢| = D, (6c)
h}_; - “..tk

or n[-ELw, + Nw, + ((WN+ M| = F, (6d)

w =
or nx[—Efuw,” + Ml =D, (6e)
¢ = ¢'k

or n [«El 8" - GIo) + NV, - yNw,
+ N+ BM + BM + BM
+{F_~k"0‘p B _}’,—) + F:.k“(zp B :t)}qﬁ}.] = CT.E (Gf)

‘¢" = 'Qlk’ )
or n,[-EL.¢"] C. (62)

InEq. (6}, n, =-latx =0, andn, = Yatx = [.

The cross-sectional constanis such as the moments of
inertia that appear in the above two sets of equations
have heen defined in the preceding works™™,
However, the following other such quantities deserve
special attention, due to the fuct that ditterences in
the symmetry conditions of the cross-sections arez
taken care of hy them;

B, = -2y, + IH [ [\ b+ 7l (7a)

B = -2+ [Ll (b eclaa
8, = i | ,.["’ b2 + oilis {7e)

The above differential equations are important from
a theoretical point of view and for obtaining
analytical solutions. However, for general loading
and boundary conditions these equations are difficult
to solve, making it necessary to device some discrete
computational procedure, employing some form of
stiffness equations.  Such a procedure has been
described in Ref.[3], following the finite clement
scheme and making use of the well known Hermite
interpolating polynomiats, which produce the
(14 times 14) stiffness equation given as;

F o+ F, K, Sy,

F_v * Fo_\ 0 K,

F+F [ "o o «k,

T+T, 0 K. K, (K, +K,+K)
(8)

The block matrices K; (ij = 1,4), and the spevial
matrices K, and X, that take care of the additional
effects of load-point locations, are all given in
Ref.[5]. Further, the compuiational pracedure
employing the above formulation uses efficient
transformation and updating procedures.

The Linearized Formulation

The linearized method uses a reduced stittness matrix
that 15 extracted from the stiffness matrix of the
general  formulation, Only those terms that
correspond to lateral and torsional degrees of freedom
are laken, and the formulation is used to plot the
linearized foad-lateral and load-torsional displacement
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curves. It has, in addition, been used to estimate
ultimate strengths of members [2].

The theoretical background as well as the solution
strategy for this lineanzed formulation has been
adequately discussed in Ref. (2). In the solution
strategy used for the linearized method, it was
necessary to use the relations between changes in the
stress resultants and the corresponding lateral and
torsional  displacements, For this reduced
formulation, only two out of the four general
govemning differential equations piven by Eq. (5) in
the preceding section, that is, only Eq. (5b) and Eq.
(5d), are relevant. Similarly, out of the seven
general boundary conditions only four, that is, Eq.
(6h), Eq. (6c}, Eq. (6f), and Eq. (6g) are usable. It
is strongly noted that, all incremental externai load
terms, which are the incremental distnbuted load
terms in the poverning differential equations as well
as the tncremental nodal force terms in the boundary
conditions, do not appear 1n the differential equations
defining for this linearized formulation.

The stiffness equation that was used for the linearized
formulation, can symbolically be represented as;

f'=Kd =K'+ MK/ &

The reduced stiffness matrix K can be extracted
from the stiffness matrix developed for the general
formulation: while the elastic component K can he
taken out at any stage of loading, the stress or
geometric component K * must be extracted from the
geometric component of the general stiffness matrix,
after determining the latter tor the unit value of the
specified load.

The vector £/ in Eq. (9} is an equivalent nodal load
vector that replaces the nodal lateral and torsional
imperfections. These elemental imperfections are
transformed to elemental nodal forces through
multiplication by the elemental elastic component
matrix of the genera] elemental stiffness matrix.
Therefore, since once defined the imperfections do
not change, the equivalent nodal forces are constant
yuantities. If the beams are assumed to he perfectly
free of such imperfections, then the problem
represented by Eq. (9) reduces to an eigenvalue
problem which has been used for the determination of
lateral-torsional buckling loads.

It is not unrealistic to assume that most practical

beams are initially geometrically imperfect. It is a
common practice to model such imperfections by
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simple and c¢ommon functions, trigonometric
functions being the most widely used ones.
Therefore, for simple beams pinned at both ends, the
imperfections are represented by half-sine waves, and
can be expressed as follows;

v, = v 8in I{’f (10q)
sk o L
| T, (10h)
= SN | —
% oz L

Similarly, for cantilever beams, the imperfections are
modeled by quarter-waves which can be expressed as;

X

= |1 - cos| A (11a)
g ' 2
X

= 1 - cosp—* (11b)
%= i 2L

and ¢, are,

In the above of equations, v’
respectively, the lateral and torsional imperfection
amplitudes over the span lengths of the beans, and
are correlated to each other by the tfollowing

exXpression;

]J
=" (12}
P, 7

The rates of changes of the lateral and torsional
imperfections, v, and ¢,”, for both cases, are
determined by the first  derivatives of  the
corresponding functions.

At any stage of computation, the load level is
changed by effecting the corresponding alteration on
the load factor A; in Eq. {9). This can be done
because the geometric component of the stiffness
matrix is a linear function of the stress resultants.
This means that the displacement components in the
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o= -2 1y ] th i
o (b2 - mpl) 1 (b2 - B)
+ 12(3,;,3 - blhi} + 18 (b,hi - blh?)]

{c) Channel Sections;

B.=f.=0 (15a-b)

[ ] b+ 4b°d — 6bd® +4d?)

’; b+ 2d) + ”d"(lzd Al
(15¢)
(d) Z-Sections.
B,=8, =0 (16a-b)

b hr

= [46" « 667 + 20Y  (160)
© " 3035 + ml_

B

Care was taken in the selection of the load-points,
which are shown by the strong dots in Fig. (3),
together with the identifications SC, BF, and 7F, for
shear center, bottom flange, and top flange,
respectively. In every case, the original loads are
assumed to be applied along the wvertical axes
containing the shear center of the respective cross-
section, so as to prevent induced torsional loading.
Fig. (3) shows the longitudinal arrangement of the
cantilever beams which are used in the investigations.

NUMERICAL EXAMPLES AND DISCUSSIONS
OF RESULTS

The Nonliniear Method

This method had been applied in the previous works
[4.5] to trace load-displacement curves for beams
having either doubly-symmetric or mono-symmetric
[-sections. In the first example which is illustrated
by Fig. (4}, the effects of the vanations of the
locations of the load-points along the vertical axes
containing the shear center is investigated using the
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10-section (110, MI10, C10, Z10) beams. The load
ordinates are normalized with respect to the critical
load for SC-loading for all sections except the
channels are shown. Only theee cﬁéhai four types of
cross-sections, that is, the I-, d Z-sections,
are seen to exhibit lateral-torsional buckling
phenomenon, and in these the effects of the variations
of the locations of the load-peints has clearly besn
observed from the load-lateral displacement curves,
by the occurrence of comparatively large
displacements near the respective buckling load
levels. For these sections, the highest curves are the
bottom flange loading, while the lowest ones were for
top flange loading cases.

Figure (4¢c) represents the investigation made for the
channel section, which is seen to manifest no lateral-
torsional buckling behavior. The three curves in this
fignre show that the situation for the channel sections
is reversed, with the highest cnrve being the one for
top flange loading while the bottom flange loading
case being the lowest curve,

The second example, which is shown by Fig. (5),
contains comparisons of load-lateral and load-
torsional displacements of all the 05-sections (103,
MIO05, CO5, and Z05). Bottom-flange loading was
selected in the comparisons. As seen on Fig. (5a),
which compares load-lateral displacement

results, the Jargest lateral displacements oceur for the
[05 beam. The lateral displacements for the C03
section are seen to be extremely small. In Fig. (5b},
the load-torsional displacement curves have bheen
compared. The loads in both figures have been
normalized with respect to the critical load for the I-
section beam.

In the final example of this section, which is
represented by Fig. {6}, the relationships between
tlange width to web height ratio and the magnitude of
lateral displacement has been nvestigated tor all four
cross-sections using SC-loading. The behaviors of
the three types of sections that exhibit instability is
apain  similar, with the largest muaximum
displacements accurring for the 05-sections while the
smallest ones were for the 15-sections.

As hefore, the behavior of the channel section which
is presented on Fig. (6¢), is seen to he opposite to
that of the other sections, with the largest lateral
displacement being that of the Cl15-sections, and the
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smallest one for the CO5 beam. In Fig. (6). the
loading have been normalized with respect to the
buckling loads for every case,

The Linearized Method

As discussed previously[2], the lineanzed method is
4 linearization of the general nonlinear method. The
basic characteristics of the lincanzed method which
makes it different from the nonlinear method is that
1t avoids coordinate transtormation, and updating of
coordinate. In addition, the linearized method has
only 8-degrees of freedom per element, as opposed to
the 4-degrees of freedom for the nonlinear one.
This was due to the fact that the linearized method
considered lateral and torsional degrees of freedom
anly.

The first example in this section is reserved to the
comparison  of the linearized method with the
nonlinear method so as to check the relative accuracy
of the tormer, and to the illustration of its other
unigue characteristics, which are connected to the
magnitude and nature ot nitial imperfections. In Fig.
{74}, load-lateral displacement curves, for a simply-
supported beam under top flunge distributed loading,
that have been drawn using the two methods, are
compared. In Fig. {7h), for the same beam with the
exception of the distributed load being applied at the
shear center, the load-torsional displacement curves
have been traced. In bhoth cases, initial lateral
imperfections only have been applied.  These two
comparnsons show the excellent agreement between
the two methods up to levels very near to the
respective buckling loads,

Figures (7¢) and (d) are devoted to the investigation
of the effects of application of different magnitudes of
the two types of imtial imperfections: lateral or
torsional imperfections. Tt 15 seen, for both cases,
that the lowest curves correspond to the numerically
largest imperfections, while the highest curves were
for the smallest ones. However, 1n cither case, all
curves converge to the same critical load levels,
These latter two investigations assure us of the
possibility of modefling any form of peometrical
nonlinearity using such initial imperfections with the
hinearized method.

The remaining two examples of this section deal with
the same type of investigations as the first two
exaumples, which were for the nonlinear method.
Thus, in Fig. {8} the effects of the variations of the
locations of the load-point were nvestigated for the
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three sections which exhibit lateral-torsional buckling
phenomenen, [n the last example, the load-lateral
and load-torsional displacement curves were drawn,
in Fig. (92 and {b) respectively, and the same
comparisens as in the second example of the
preceding section were performed. These two last
examples have shown that, the linearized method can
be employed to give useful results as were oblained
using the nonlinear method.

CONCLUSIONS

The applications of the theoretical development that
was hased on the finite displacement theory has been
extended to the treatment of members having cross-
sections that were not included in previous studies
[4,5]. The development has been presented in forms
of goveming differential equations and  stiffness
equations, and the factors in thuin which take care of
the effects of cross-sectional symmetry conditions
have been explicitly and cfficiently determined. A
generalized nonlinear method has been employed to
investigate the nonlinear pre-buckling as well as the
post-buckling load-displacement behaviors of doubly-
symmetric  [-sechon,  mono-symmetric  I-section,
channel section, and Z-section beams. Another
reduced formulation, the linearized method has been
used to study the pre-buckling load-displacement
behaviors of the same members. The buckhing loads
were determined through eigenproblem  solution
scheme, which uses the stiftness matrix of the
reduced linearized formulation.  The following
conclusions were made from observations of the
computational results of the several illustrative
examples presented in this study.

{a) While some previous rescarchers believed that
both the channel section and Z-section beams did
not exhibit lateral-torsional buckling, the present
study has ascertained that this was true only tor
the channel section beums: both the load-
displacement behavior studies using the two
methods as well as the eigenproblem solution
scheme have indicated that the Z-section beams
manifest some form of lateral-torsional instability,

(b} The load-point focation was seen to greatly affect
not only the buckling loads (when there are uny},
but also the finite displacement behavior ot all
beams used im the study,  For the channel
sections which did not exhibit instability, the level
of the curves was 1o reverse order,
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(¢) The chaanel and Z-section beams seem to show
large reserve strengths as observed from their
load-displacement curves, which were seen to be
the highest during comparisons to those of the
other sections. However, this bhas to be checked
through some form of an ultimate strength study
of the members, since this reserve strength also
geems to correspond to fairly large stresses,

{d) The flange width to web height ratio has a
definite effect on the load-displacement behaviors
of all the members. While the response pattern
for the sections that exhibit instability was
similar, that for the channel section is seen to
occur in reverse order, simular to what was seen
in (b}, above. This fuct was the same for load-
displacements studies using the nonlinear as well
as the hinearized method.
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