UNIFORM LOAD COEFFICIENTS FOR BEAMS IN REINFORCED CONCRETE TWO - WAY SLABS

Bedlu Habte
Department of Building Technology Addis Ababa University

Abstract

While designing reinforced concrete two - way slab systems, triangular or trapezoidal loadings are encountered dwring transferring the slab loading to the supporting beams. When analysing continuous beams, uniform loading conditions are, as much as possible, preferred because of their simplicity. In this paper, respective equivalent uniformly distributed load coefficients are derived based on the Ethiopian Standard Code of Practice (ESCP2) [1] recommendation. Results are tabulated for all the possible cases of slab support conditions. A numerical example has been presented to illustrate the application of the coefficients in actual design problems.

It has also been tried to verify some of the results by comparing the recommended side ratio of the slab loadings with the yield line analysis of slabs, the derived coefficients with elastic analysis of single span beams, the total panel loading with the total load the four supporting beams carry. Under these three aspects imvestigation has been made on the recommendation of the new Building Code Standards [11] which is to be launched in the near future.

INTRODUCTION

In reinforced concrete buildings, the slab panels cast integrally with the beams behave in a two - way action as long as the side ratio of a panel (longer side / shorter side) is not greater than two. In such cases the panel is said to be supported on all four sides. The proportion of the slab loading to be shared by each of the supporting beam depends on the edge fixity, the side ratio of the panel and the amount and nature of slab reinforcements: isotropic vs. orthotropic and top vs. bottom reinforcement $[5,8,10]$. Furthermore, for the same reasons, the distribution of the portion of the slab loading to be carried by a particular boundary beam may be triangular or trapezoidal.

Figure 1 Load dispersion from slab to the four supporting beams

Coefficients have been developed in this paper to convert the resuling triangular or trapezoidal loadings into equivalent uniform loadings. With the help of a shor computer program, values for all the possible support conditions as well as for different side ratios have been derived. By using these coefficients, the design engineer can efficiently and more quickly transfer the slab loading to the supporting beams.

Once the equivalent uniform loading from the slab is obtained, the designer needs only to add to this value the beam's own weight and then analyse the beam using his own convenient method.

The coefficients shall be used for moment computation of the beams as recommended in the ESCP2 [1]. These coefficients are applicable if the slab panel is bounded by beams on all four sides and the slab loading is uniformly distributed over the panel.

DERIVATION OF EQUATIONS AND COEFFICIENTS

In the Ethiopian Standard code of Practice (ESCP2) [1], it is stated that " Calculation of moments and shears due to trapezoidal and triangular loads may be simplified by using equivalent uniformly distributed loads of intensity equal to the appropriate coefficient k given below times the maximum ordinate of the trapezium or triangle.

The coefficient for moment calculation is given by,

$$
k=1-4 \alpha^{2} / 3
$$

where,

$$
\alpha=\left(\alpha_{1}+\alpha_{2}\right) / 2 \ldots
$$

Figure 2 Trapezoidal and triangular loadings

Figure 3 Slab panel simply supported on all four sides

In general

$L_{y}=$ the longer side,
$L_{x}=$ the shorter side,
$r=L_{x} / L_{y}$,
ω = the uniform slab load,
$l=\alpha_{1} L_{x}$
$m=\alpha_{2} L_{x}$
$w_{1}, w_{2}, w_{3}, w_{4}=$ uniform loads on the four boundary beams supporting the slab.

Side 1 :

$$
\begin{aligned}
& l=\mathrm{L}_{x} / 2 \\
& \alpha_{1}=\alpha_{2}=\alpha=\left(L_{x} / 2\right) / L_{y}=0.5 r \\
& k=1-4 a^{2} / 3=1-r^{2} / 3
\end{aligned}
$$

therefore,

$$
\begin{aligned}
& w_{1}=k\left(0.5 L_{x} \omega\right)=0.5\left(1-r^{2} / 3\right) L_{x} \omega \\
& k_{1}=0.5\left(1-r^{2} / 3\right)
\end{aligned}
$$

Side 2 : this is identical to side 1 , and therefore

$$
\begin{aligned}
& w_{2}=w_{1} \\
& k_{2}=0.5\left(1-r^{2} / 3\right)
\end{aligned}
$$

Side 3:

$$
\begin{aligned}
& \alpha_{1}=\alpha_{2}=\alpha=\left(L_{\Omega} / 2\right) / L_{x}=0.5 \\
& k=1-4 a^{2} / 3=2 / 3
\end{aligned}
$$

hence,

$$
\begin{aligned}
& \boldsymbol{w}_{3}=k\left(0.5 L_{x} \omega\right)=(2 / 3)\left(0.5 L_{x} \omega\right)=(1 / 3) L_{x} \omega . \\
& k_{3}=1 / 3
\end{aligned}
$$

Side 4 : this is identical to side 3 , and therefore

$$
\begin{aligned}
& w_{4}=w_{3} \\
& k_{1}=1 / 3
\end{aligned}
$$

Case 2:

Figure 4 Slab panel continuous along one of the longer sides only.

Side 1

$$
\begin{aligned}
& l=2 L_{x} / 5 \\
& \alpha_{1}=a_{2}=\alpha=\left(2 L_{x} / 5\right) / L_{y}=(2 / 5) r \\
& k=1-4 a^{2} / 3=1-16 r^{2} / 75
\end{aligned}
$$

therefore,

$$
\begin{aligned}
& w_{1}=k\left(3 L_{x} \omega / 5\right)=\left(75-16 r^{2}\right) L_{x} \omega / 125 \\
& k_{1}=\left(75-16 r^{2}\right) / 125
\end{aligned}
$$

Side 2:

$$
\begin{aligned}
& l=2 L_{l} / 5 \\
& \alpha_{1}=\alpha_{1}=\alpha=\left(2 L_{l} / 5\right) / L_{y}=(2 / 5) r \\
& k=1-4 \alpha^{2} / 3=1-16 r^{2} / 75
\end{aligned}
$$

the efore,

$$
\begin{aligned}
& w_{2}=k\left(2 L_{x} \omega / 5\right)=2\left(75-16 r^{2}\right) L_{x} \omega / 375 \\
& k_{2}=2\left(75-16 r^{2}\right) / 375
\end{aligned}
$$

Side 3:

$$
\alpha_{1}=2 / 5, \alpha_{2}=7 / 5, \alpha=0,5
$$

$$
k=1-4 a^{2} \Omega=2 \pi
$$

hence,
$w_{3}=k(2 / 5) L_{3} \omega-12 / 3 \mu 2 / 5 L_{5} \omega=(4 / 15) L_{2} \omega$ $k_{7}=4 / 15$

Side 4: this is identical th side ?, and herefore

$$
\begin{aligned}
& \boldsymbol{w}_{1}-w_{3}, \\
& k_{1}=1 / 3
\end{aligned}
$$

Case 3:

Figute 5 slab pane tomimutus alung one of the shorter nder andy
(a) $L_{\nu} L_{\mathrm{c}} \times 1.25$ (b: $i_{,} L_{\mathrm{c}}>-125$

For $I_{y} H_{2}<125$
Side 1:

$$
\begin{aligned}
& l=3 L_{\gamma} / 5, m=2 L / \sqrt{5} \\
& \alpha,-\left(3 L^{2} / 5 N L=3 / 5\right. \\
& \alpha=\left(2 L / 5 / L L_{s}-2 / 5\right. \\
& \alpha=1 / 2 \\
& k=1-4 a^{2} / 3-2 / 3
\end{aligned}
$$

thercfore,

$$
\begin{aligned}
& \left.w_{1}=k+2 L, 5\right) \omega=r \psi /(15 r) \omega L_{4} \omega \\
& k_{1}=4 /(15 r)
\end{aligned}
$$

Side 2: this is identical tu sude I, and therefore

$$
\begin{aligned}
& w_{2}=w_{1} \\
& k_{2}=4 /(15 r)
\end{aligned}
$$

Side 3:

$$
\begin{aligned}
& a_{1}-a_{2}=a=(2 L / 5) / L_{x}=2 /(5 n), \\
& \left.k=1-4 a^{2} / 3-1-4 i 2 /(5 r)\right)^{2 / 3}-1-10 /\left(7 r^{2}\right)
\end{aligned}
$$

bence,

$$
\begin{aligned}
w_{3} & =\mathfrak{K}(m \omega)=\left(\left(75 r^{2}-16\right) /\left(75 r^{2}\right)\right)(2 /(5 r)) L_{x} \omega \\
& =\left(150 r^{2}-32\right) /\left(375 r^{3}\right) L_{x} \omega \\
k_{1} & =\left(150 r^{2}-32\right) /\left(375 r^{3}\right)
\end{aligned}
$$

Side 4:

$$
\begin{aligned}
& a_{1}=\alpha_{2}=a=(2 L / 5) / L_{x}=2 /(5 r), \\
& h=1-4 \alpha^{2} / 3=1-4(2 /(5 r))^{7} / 3=1-16 /\left(75 r^{2}\right.
\end{aligned}
$$

hence,

$$
\begin{aligned}
w_{4}^{\prime} & =k(\omega)=\left(\left(75 r^{2}-16\right) /\left(75 r^{2}\right)\right)(3 /(5 r)) L_{x} \omega \\
& =\left(75 r^{2}-16\right) /\left(125 r^{2}\right) L_{z} \omega \\
k_{4} & =\left(75 r^{2}-16\right) /\left(125 r^{3}\right)
\end{aligned}
$$

If $L_{1} / L_{z}>=125$, bhen
side 1

$$
\begin{aligned}
& I=L_{1} 4, \quad m=05 L_{\mathrm{r}} \\
& \alpha_{1}-13 L_{r} / 4 / / L_{\mathrm{r}}-(3 / 4) r \\
& \alpha_{2}=105 L_{\mathrm{r}} / / L_{\mathrm{r}}=05 r \\
& \alpha=5 \mathrm{~s} / \mathrm{m} \\
& h=1-4 a^{2} / 3-1-25 r / 48
\end{aligned}
$$

therefore.

$$
\begin{aligned}
& w_{1}=k\left(0.5 L_{x}(\omega)=\left(48-25 r^{2}\right) L_{x} \omega / 96\right. \\
& k_{1}=\left(48-25 r^{2} / 96\right.
\end{aligned}
$$

Side 2: this is identical to side 1 , and therefore

$$
\begin{aligned}
w_{2} & =w_{1} \\
k_{2} & =\left(48.25 r^{2} / / \epsilon_{6}\right.
\end{aligned}
$$

Side 3:

$$
\begin{aligned}
& a_{1}=\alpha_{2}=\alpha=1 / 2, \\
& k-1 \cdot 4 \alpha^{2 / \beta}=2 \beta
\end{aligned}
$$

hence.

$$
\begin{aligned}
& \left.W_{1}=k_{k}\left(0.5 L_{x} \omega\right)=(2 / 3)(1 / 2) L_{x} \omega\right)=(1 / 3) L_{x} \omega \\
& k_{1}=1 / 3
\end{aligned}
$$

sude +

$$
\begin{aligned}
& a_{1}=a_{2}-\alpha=1 / 2, \\
& k=1-\cos / 3=2 \Omega
\end{aligned}
$$

hance.

$$
\begin{aligned}
& \left.H_{4}-k(3) 4 /, \omega\right)=(2 \Omega)(3 / 4) L_{n} \omega=(1 / 2) L_{x} \omega \\
& k_{4}-1 / 2
\end{aligned}
$$

Fin Uk orfler cases, smilar procedure is employed to atise at the fielsoring results.

Cure 4

Figure 6 Slab panel continious along the wo adjacent sides only

$$
\begin{aligned}
& k_{1}=2\left(3-r^{2}\right) / 15 \\
& k_{2}=\left(3-r^{2}\right) / 5 \\
& k_{3}=4 / 15 \\
& k_{4}=1 / 6
\end{aligned}
$$

Case 5:

Figure 7 Slab panel continuous along the two longer sides only.

$$
\begin{aligned}
& k_{\mathrm{t}}=\left(27-4 r^{2}\right) / 54 \\
& k_{2}=\left(27-4 r^{2}\right) / 54 \\
& k_{1}=2 / 9 \\
& k_{4}=2 / 9
\end{aligned}
$$

2

Case 6:

Figure 8 Slab panel continuous along the two shorter sides only
(a) $L / L_{x}<1.5$
(b) $L_{y} / L_{z}>=1.5$

If $L / L_{x}<=1.5$, then

$$
k_{1}=2 /(9 r)
$$

$$
k_{2}=2 f(9 r)
$$

$$
\kappa_{1}=\left(27 r^{2}-4\right)\left(54 r^{3}\right)
$$

$$
k_{4}=\left(27 r^{2}-4\right) /(54 r)
$$

If $L / L_{x x}>=1.5$, then

$$
\begin{aligned}
& k_{1}=\left(4-3 r^{2}\right) / 8 \\
& k_{2}=\left(4-3 r^{2}\right) / 8 \\
& k_{3}=1 / 2 \\
& k_{4}=1 / 2
\end{aligned}
$$

Case 7:

Figure 9 Slab panel simply supported along one of the shorer sides only

$$
\begin{aligned}
& k_{1}=\left(108-25 r^{2}\right) / 216 \\
& k_{2}=\left(108-25 r^{2} / 216\right. \\
& k_{3}=2 / 9 \\
& k_{4}=1 / 3
\end{aligned}
$$

Case 8:

Figure 10 Slah panel simply supported along one of the longer sides only
$\begin{array}{ll}\text { (a) } L_{y} / L_{x}<1.2 & \text { (b) } L_{y} / L_{x}>=1.2 \text {. }\end{array}$
If $L / L_{x}<1.2$, then

$$
\begin{aligned}
& k_{1}=2 /(9 r) \\
& k_{2}=1 /(3 r) \\
& k_{3}=\left(108 r^{2}-25\right) /\left(216 r^{2}\right) \\
& k_{4}=\left(108 r^{2}-25\right) /\left(216 r^{3}\right)
\end{aligned}
$$

If $L / L_{x}>=1.2$, then

$$
k_{1}=2\left(25-12 r^{2}\right) / 125
$$

$k_{2}=3\left(25-12 r^{2}\right) / 125$
$k_{1}=2 / 5$
$k_{4}=2 / 5$

Cane 9:

Figure 11 Slab panel continuous along all fow sides

$$
\begin{aligned}
& k_{1}=0.5\left(1-r^{2} / 3\right) \\
& k_{2}=0.5\left(1-r^{2} / 3\right) \\
& k_{2}=1 / 3 \\
& k_{4}=1 / 3
\end{aligned}
$$

Finally, with the help of a short computer program, the various coefficients have been computed and tabulated in Table 1.

Table 1: Equivalent Uniform Load Coefficjents for Morrent for Beams Supporting Uniformly Loaded Two - way Slabs.
(For moment based on $k=1-4 a^{2} / 3$)

$$
\boldsymbol{w}_{i}=k_{i} \omega L_{x}
$$

In which,
$w,=$ equivalent uniform load on bearn along side (kN / m) .
$k_{1}=$ equivalent unilorti load coeffieent (Table 1),
$\omega=$ uniformly distributed siab loading (kpa),
$L_{\mathrm{s}}=$ short side of the panel (m),
1 = the side number of the slab panel (I to 4)

Thle 2: Equivalent Uniform Lowl Coeficients for Sheir for Beams Supporting Unifornly Loedad Two - way Slabs

Support Condition	k,	L_{y} / L_{x}										
		1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
1	$\begin{aligned} & k_{1} \\ & k_{2} \\ & k_{1} \\ & k_{1} \end{aligned}$	0.3333	0.3623	0.3843	0.4014	0.4150	0.4259	0.4349	0.4423	0.4486	0.4538	0.4583
		0.3333	0.3623	0,3843	0.4014	0.4150	0.4259	0.4349	0.4423	0.4486	0.4538	0.4583
		0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3313	0.3313	0.3333	0.3333	0.3333
		0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333
2	$\begin{aligned} & k_{1} \\ & k_{1} \\ & k_{4} \\ & k_{4} \end{aligned}$	0.4720	0.4942	0.5111	0.5243	0.5347	0.5431	0.5500	0.5557	0.5605	0.5645	0.5680
		0.3147	0.3295	0.3407	0.3495	0.3565	0.3621	03667	0.3705	0.3737	0.3764	0.3787
		0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667
		0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667	0.2667
3	$\begin{aligned} & k_{1} \\ & k_{1} \\ & k_{1} \\ & k_{4} \end{aligned}$	0.2667	0.2933	0.3200	0.3459	0.3671	03843	03983	0.4099	0.4196	0.4279	0.4349
		0.2667	0.2933	0.3200	0.3459	0.3671	0.3843	0.3983	04099	0.4196	0.4279	0.4349
		0.3147	0.3264	0.3325	0.3333	0.3333	0.3333	0.333	0.3333	0.3333	03333	03333
		0.4720	0.4896	0.4988	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	05000
	$\begin{aligned} & k_{1} \\ & k_{1} \\ & k_{1} \\ & k_{4} \end{aligned}$	0.4000	0.4347	0.4611	0.4817	0.4980	0.5111	0.5219	0.5308	0.5383	0.5446	0.5500
		0.2667	0.2898	0.3074	0.3211	0.3320	0.3407	0.3479	0.3539	0.3588	0.3631	0.3667
		0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	04000	(1)400)	0400	0.40 KO	0.4000
		0.2667	0.2667	0.2667	0.2667	02667	() 2667	02667	02667	U. 2667	02667	02607
5	$\begin{aligned} & \boldsymbol{k}_{1} \\ & k_{1} \\ & k_{1} \\ & \boldsymbol{k}_{4} \end{aligned}$	0.4259	0.4388	0.4486	0.4562	0.4622	0.4671	0.4711	0.4744	0.4771	0.4795	0.4815
		0.4259	0.4388	04486	0.4562	0.4622	0.4671	04711	0.4744	04771	0.4795	04815
		0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222
		0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	02222	0.2222
	$\begin{aligned} & k_{1} \\ & k_{1} \\ & k_{1} \\ & k_{4} \end{aligned}$	0.2222	0.2444	0.2667	0.2889	0.3111	0.3333	0.3535	0.3702	0.3843	3961	0.4063
		0.2222	0.2444	0.2667	0.2889	0.3111	0.3333	0.3535	0.3702	0.3843	0.3961	0.4063
		0.4259	0.4514	0.4720	0.4873	0.4967	05000	0.5000	0.5000	0.5000	0.5000	0.5000
		0.4259	0.4514	0.4720	0.4873	0.4967	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
	$\begin{aligned} & k_{1} \\ & k_{4} \\ & k_{1} \\ & k_{4} \end{aligned}$	0.3843	0.4043	0.4196	0.4315	0.4409	0.4486	0.4548	0.4600	0.4643	0.4679	0.4711
		0.3843	0.4043	0.4196	0.4315	0.4409	0.4486	0.4548	0.4600	0.4643	0.4679	0,471!
		0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	03333	0.3333	0.3333
		0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222	0.2222
	$\begin{aligned} & k_{1} \\ & k_{1} \\ & k_{1} \\ & k_{4} \end{aligned}$	0.3333	0.3667	0.4000	0.4296	0.4531	0.4720	0.4875	0.5003	0.5111	0.5202	0.5280
		0.2222	0.2444	0.2667	0.2864	0.3020	0.3147	0.3250	0.3336	0.3407	0.3468	0.3520
		0.3843	0.3959	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
		0.3843	0.3959	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
	k_{1}	0.3333	0.3623	0.3843	0.4014	0.4150	0.4259	0.4349	0.4423	0.4486	0.4538	0.4583
	k_{1}	0.3133	0.3623	0.3843	0.4014	0.4150	0.4259	0.4349	0.4423	0.4486	0.4538	0.4583
	k_{1}	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333
	k_{4}	0.3333	0.3333	0.3333	0.1033	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333	0.3333

(For shear, based on $k=1-a$)

$$
w_{t}=\boldsymbol{k}_{t} \omega L_{x}
$$

In which,
$w_{i}=$ equivalent uniform load on beam along side l ($\mathrm{kN} / \mathrm{mn}$),
$k_{f}=$ equivalent uniform loed coefficient (Table 2),
$\omega=$ uniformy distributed sleb loading (lpa),

$L_{1}=$ short side of tho penel (m),
 $i=$ the side number of the sleb panel (1 to 4).

Support Condition	k_{i}	L_{y} / L_{x}											
		1.0	1.1	1.2	1.3	1.4	1.5	. 1.6	1.7	1.8	1.9	2.0	
	\boldsymbol{k}_{1}	0.25	0.27	0.29	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	
	k_{2}	0.25	0.27	0.29	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	
	k_{2}	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
	\boldsymbol{k}_{4}	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
\|c	ermil	k_{1}	0.36	0.38	0.40	0.42	0.43	0.44	0.45	0.46	0.47	0.47	0.48
	k_{2}	0.24	0.25	0.27	0.28	0.29	0.29	0.30	0.31	0.31	0.32	0.32	
	k_{2}	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	
	\boldsymbol{k}_{4}	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	
	k_{1}	0.20	0.22	0.24	0.26	0.28	0.29	0.30	0.32	0.33	0.34	0.34	
	k_{1}	0.20	0.22	0.24	0.26	0.28	0.29	0.30	0.32	0.33	0.34	0.34	
	k_{3}	0.24	0.23	0.22	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
	\boldsymbol{k}_{4}	0.36	0.35	0.33	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	
	k_{1}	0.20	0.22	0.23	0.25	0.26	0.27	0.27	0.28	0.29	0.29	0.30	
	k_{2}	0.30	0.33	0.35	0.37	0.39	0.40	0.41	0.42	0.43	0.44	0.45	
	k_{3}	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	
	k_{4}	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
	k_{1}	0.33			0.37	0.38	0.39	0.40	0.40	0.41		0.42	
	k_{2}	0.33	0.35	0.36	0.37	0.38	0.39	0.40	0.40	0.41	0.41	0.42	
	k_{3}	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	
	k_{4}	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	
	k_{1}	0.17	0.18	0.20	0.22	0.23	0.25	0.27	0.28	0.29	0.30	0.31	
	k_{2}	0.17	0.18	0.20	0.22	0.23	0.25	0.27	0.28	0.29	0.30	0.31	
	k_{2}	0.33	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.38	0.38	0.38	
	k_{4}	0.33	0.35	0.36	0.37	0.37	0.38	0.38	0.38	0.38	0.38	0.38	
	k_{1}	0.33	0.35	0.36	0.37	0.38	0.39	0.40	0.40	0.41	0.41	0.42	
	k_{1}	0.33	0.35	0.36	0.37	0.38	0.39	0.40	0.40	0.41	0.41	0.42	
	k_{3}	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	
	k_{4}	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
	k_{1}	0.17	0.18	0.20	0.22	0.23	0.24	0.25	0.26	0.27	0.27	0.28	
	k_{2}	0.25	0.27	0.30	0.32	0.34	0.36	0.38	0.39	0.40	0.41	0.42	
	k_{3}	0.29	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
	k_{4}	0.29	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	
	k_{1}	0.25	0.27	0.29	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	
	k_{2}	0.25	0.27	0.29	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	
	k_{2}	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
	k_{4}	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	

NUMERICAL EXAMPLE

Panel II:
This panel is case 8, for which $L / L_{4}=1.8$, the corresponding uniform lowd coefficients (Table 2) are;

$$
\begin{aligned}
& k_{1}=0.27 \\
& k_{2}=0.4 \\
& k_{1}=0.3 \\
& k_{4}=0.3
\end{aligned}
$$

and the uniform beam loadings are,
$w_{1}=0.27(6.25)(3)=5.06 \mathrm{KN} / \mathrm{m}$
$w_{2}=0.4(6.25)(3)=7.50 \mathrm{KN} / \mathrm{m}$
$w_{3}=0.3(6.25)(3)=5.63 \mathrm{KN} / \mathrm{m}$
$\boldsymbol{w}_{4}=0.3(6.25)(3)=5.63 \mathrm{KN} / \mathrm{m}$

Panel III:

This panel is case 4, for which $L / L_{4}=1.5$, the corresponding uniform load coefficients (Table 2) are;

Given:

For the slab system shown in Fig 21 above,
Live load $=2.5 \mathrm{kpa}$,
Slab thickness $=15 \mathrm{~cm}$,
Assume beam own $w .=2.5 \mathrm{KN} / \mathrm{m}$,
Required: Total equivalent uniform loading on beam along axis B.

Solution:
Total uniform slab loading $=2.5+0.15(25)=6.25 \mathrm{kpa}$

Panel I:

This panel is case 4, for which $L_{y} / L_{x}=1$, the corresponding uniform load coefficients (Table 2) are;
$k_{1}=0.2$
$k_{2}=0.3$
$k_{2}=0.2$
$\boldsymbol{k}_{4}=0.3$
and the uniform beam loadings are,
$w_{1}=0.2(6.25)(3)=3.75 \mathrm{KN} / \mathrm{m}$
$w_{2}=0.3(6.25)(3)=5.63 \mathrm{KN} / \mathrm{m}$
$w_{3}=0.2(6.25)(3)=3.75 \mathrm{KN} / \mathrm{m}$
$w_{4}=0.3(6.25)(3)=5.63 \mathrm{KN} / \mathrm{m}$
$k_{1}=0.27$
$k_{1}=0.4$
$k_{1}=0.2$
$k_{4}=0.3$
and the uniform bearn loadings are,
$w_{1}=0.27(6.25)(3)=5.06 \mathrm{KN} / \mathrm{m}$
$w_{2}=0.4(6.25)(3)=7.50 \mathrm{KN} / \mathrm{m}$
$w_{3}=0.2(6.25)(3)=3.75 \mathrm{KN} / \mathrm{m}$
$w_{4}=0.3(6.25)(3)=5.63 \mathrm{KN} / \mathrm{m}$

Panel IV:

This panel is case 7, for which $L_{f} / L_{x}=1$, the corresponding uniform load coefficients (Table 2) are;
$k_{1}=0.33$
$k_{2}=0.33$
$k_{3}=0.17$
$k_{4}=0.25$
and the uniform beam loadings are,
$w_{4}=0.33(6.25)(3)=6.19 \mathrm{KN} / \mathrm{m}$
$w_{2}=0.33(6.25)(3)=6.19 \mathrm{KN} / \mathrm{m}$
$w_{3}=0.17(6.25)(3)=3.19 \mathrm{KN} / \mathrm{m}$
$w_{4}=0.25(6.25)(3)=4.69 \mathrm{KN} / \mathrm{m}$

Panel V:

$$
\begin{aligned}
F_{3}= & 2.5(\text { own wt })+7.50(\text { from panel III }) \\
& +6.75(\text { from penel } \mathrm{VI})=16.75 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

This panel is case 9 , for which $L / L_{x}^{\prime}=1.8$, the corresponding uniform load coefficients (Table 2) are;
$k_{1}=0.36$
$\boldsymbol{k}_{\mathbf{2}}=0.36$
$k_{2}=0.25$
$k_{4}=0.25$
and the uniform beam loadings are,
$w_{1}=0.36(6.25)(3)=6.75 \mathrm{KN} / \mathrm{m}$
$w_{2}=0.36(6.25)(3)=6.75 \mathrm{KN} / \mathrm{m}$
$w_{3}=0.25(6.25)(3)=4.69 \mathrm{KN} / \mathrm{m}$
$w_{4}=0.25(6.25)(3)=4.69 \mathrm{KN} / \mathrm{m}$
Figure 13 Equivalent uniform loading on beam along

Panel VI:

This panel is case 7 , for which $L / L_{1}=1.5$, the corresponding uniform load coefficients (Table 2) are;
$\boldsymbol{k}_{1}=0.39$
$\boldsymbol{k}_{2}=0.39$
$k_{3}=0.17$
$k_{4}=0.25$
and the uniform beam loadings are,
$w_{1}=0.39(6.25)(3)=7.31 \mathrm{KN} / \mathrm{m}$
$w_{2}=0.39(6.25)(3)=7.31 \mathrm{KN} / \mathrm{m}$
$w_{3}=0.17(6.25)(3)=3.19 \mathrm{KN} / \mathrm{m}$
$w_{4}=0.25(6.25)(3)=4.69 \mathrm{KN} / \mathrm{m}$
Accordingly, the loading on beam along axis B is given below and shown in Fig 13.
$F_{1-2}=2.5($ own wt.) +5.63 (from panel I)
+6.19 (from panel IV) $=14.32 \mathrm{KN} / \mathrm{m}$
$F_{2.3}=2.5$ (own wt.) +7.50 (from panel II)
+6.75 (from panel V) $=16.75 \mathrm{KN} / \mathrm{m}$
$V_{x}=\beta_{v x}\left(g_{d}+q_{d}\right) L_{x}$
$V_{y}=\beta_{r}\left(g_{d}+q_{d}\right) L_{x}$

$$
r_{y}-\rho_{p_{y}}\left(I_{d}+q_{d}\right) L_{x}
$$

(1) The design load on beams supporting solid slabs spanning in two directions at right angles supporting uniformly distributed loads may be assessed from the following equation:

A new Building Code Standard for the structural use of concrete has been prepared and is to be leunched within a short time. On the topic of load dispersion from slab to bearns, the new code provides a table with coefficients similar to the ones derived in this paper. These coefficients are shown in Table 2 for comparison. According to this new code recommendation,

Table 2: Shear Force Coefficients for Uniformly Loeded Rectangular Panels Supported on Four Sides With Provision for Torsion at Corners

Type of panel and location	Edge	β_{xax} for values of L_{y} / L_{x}								
		1.0	1.1	1.2	1.3	1.4	1.5	1.75	2.0	$\beta_{v y}$
1	Continuous	0.33	0.36	0.39	0.41	0.43	0.45	0. 48	0.50	0.33
2	Continuous Discontinuous	0.36	0.39	0.42	0.44	0.45	0.47	0.50	0.52	0.36
				-	-	-	-	.	-	0.24
3	Continuous Discontinuous	$\begin{aligned} & 0.36 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.47 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.59 \\ & 0.38 \end{aligned}$	0.36
\% 4	Continuous Discontinuous	$\begin{aligned} & 0.40 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.47 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.57 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.26 \end{aligned}$
5	Continuous Discontinuous	0.40	0.43	0.45	0.47	0.48	0.49	0. 52	0.54	0.26
				-	-		-	.		
	Continuous Discontinuous	0.26	0.30	0.33	0.36	0.38	$0 . \overline{40}$	0.44	0.47	0.40
7	Continuous Discontinuous	$\begin{aligned} & 0.45 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.57 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 0.63 \\ & 0.41 \end{aligned}$	$0 . \overline{30}$
	Continuous Discontinuous	0.30	0.33	$0 . \overline{3}$	0.38	0.40	0.42	0.45	0.48	$\begin{aligned} & 0.40 \\ & 0.30 \end{aligned}$
	Discontinuous	0.33	0.36	0.39	0.41	0.43	0.45	0.48		
									0.50	0.33

Figure 14 Distribution of Load on a Beam Supporting a Two- Way Spanning Slab
(2) Table 2 gives values of load transfer coefficients. The assumed distribution of the load on a supporting beem is shown in Fig. 14.

Based on this new building code standard recommendation, the londing on Axis B for the example given earlier has been recalculated and the reault is chown in Fig. 15.

Figure 15 Load on Axis B according to the new code EBCS2

RESULT VERIFICATION

The following three points need to be considered in order the results obtained in this paper to be valid. Namely :

1. To what extent is the suggested proportion (i.e. $1: 1$ and $2: 3$) of slab loading shared by the supporting beams correct?
2. Are the derived equivalent uniform loedings representing the actual situation? (Or Are the maximum mid span moments and/ or support moments produced by the uniform loadings on the beam similar to the ones produced by the actual triangular or trapezoidal loadings?)
3. Is the total slab loading carried by the four supporting beams of a panel correct ?

For the first point, the ESCP2 recommendation is based on the yield line pattern as indicated in Reinforced Concrete slab design procedures [3,6,7,9].

Figure 16 Load dispersion (a) as obtained by the yield line analysis for isotropic slab, (b) as recommended by the ESCP2.

Using the yield line analysis for a rectangular, isotropic slab panel, simply supported along the two adjacent edges and fixed along the other two, Dyaratnam [3] has come up with the result shown in Fig.16(a). The suggested slope given in the code, as shown in Fig.16(b), is very close to the yield line result. The reason for the small discrepancy may arise from the fact that the negative moments in slabs being actually higher than the field moments and therefore support reinforcements are normally higher (non-isotropic).

Hence, as recommended, if two adjacent sides have the same fixity, a ratio of $1: 1$ is to be used, while for different fixity (one side fixed and the adjacent side simply supported), a $2: 3$ ratio shall be used.

To check whether the equivalent uniform loading gives the same moments at critical locations, the following three panel cases are investigated.

Case 1 Simply supported all round

Sides $/ \& 2$

Figure 17 . Simply supported beam londed with trapezoidal loading

Using the actual trapezoidal loading [2,4] :

$$
\begin{aligned}
M_{\max }^{+} & =\left(0.5-r^{2} / 6\right)\left(\omega L_{x} L_{y}^{2 / 8)}\right. \\
& =k_{m}\left(\omega L_{x} L_{y}^{2} / 8\right)
\end{aligned}
$$

Using equivalent uniform loading (Table 1),

$$
M_{\max }^{+}=k_{1}\left(\omega L_{x} L_{y}^{2} / 8\right)
$$

Using the new code (EBCS2) recommendation [2,4,11],

$$
\begin{aligned}
M_{\text {max }}^{+} & =\left(15 \beta_{n} / 16\right)\left(\omega L_{x} L_{y}^{2} / 8\right) \\
& =k_{n^{+}}\left(\omega L_{x} L_{y}^{2} / 8\right)
\end{aligned}
$$

k_{1} and k_{m} are equal for all values of r indicating that the equivalent uniform loading does give the same moment at mid span as the actual trapezoidal loading. For this case, the EBCS 2 coefficient k_{+}. varies from \boldsymbol{k}_{w} by about 6\%.

Sides $3 \& 4$,

Using the actual triangular loading $[2,4]$,

$$
\begin{aligned}
M_{\max }^{+} & =(1 / 3)\left(\omega L_{x}^{3} / 8\right) \\
& =k_{m}\left(w L_{x}^{3 / 8}\right)
\end{aligned}
$$

Figure 18 Simply supported beam loaded with triangular loading

Using equivalent uniform loading (Table 1),

$$
M_{\max }^{+}=k_{3}\left(\omega_{x} L_{x}^{3 / 8}\right)
$$

Using the new code (EBCS2) recommendation [2,4,11] ,

$$
\begin{aligned}
M^{\prime} & =(15 \beta / 16)\left(\omega L L_{3}^{2} / 1\right) \\
& =k_{1+1}\left(\omega L L_{y}^{2} / 8\right)
\end{aligned}
$$

Here again the comparison shows that the equivalent uniform load and the actual triangular loading have equal mid span moments. The moment coefficient for the EBCS2 loading also has the same variation.

Case 9 Fixed anport all round
Sides $1 \& 2$

Figure 19 Fixed beam loaded with trapezoidal loading
Using the actual trapezoidal loading [2,4] ,

$$
\begin{aligned}
M_{\max } & =\left(0.5-0.25 r^{2}+r^{2} / 16\right)\left(\omega L_{x} L_{y}^{2} / 12\right) \\
& =k_{s}\left(\omega L_{x} L_{y}^{2} / 12\right) \\
M_{\max }^{*} & =\left(0.5-0.125 r^{3}\right)\left(\omega L_{x} L_{y}^{2} / 24\right) \\
& =k_{m}\left(\omega L_{x} L_{y}^{2} / 24\right)
\end{aligned}
$$

Using equivalent uniform loading (Table 1),

$$
\begin{aligned}
& M_{\text {max }}=k_{1}\left(\omega_{y} L_{y}^{2} / 12\right) \\
& M_{\text {max }}^{+}=k_{3}\left(\omega L_{x} L_{y}^{2} / 24\right)
\end{aligned}
$$

Using the new code (EBCS2) recommendation [2,4,11] ,

$$
\begin{aligned}
M_{\text {max }} & =\left(117 \beta_{v} / 128\right)\left(\omega L_{x} L_{y}^{2} / 12\right) \\
& =k_{n}\left(\omega L_{L} L_{y}^{2} / 12\right) \\
M_{\text {max }} & =\left(63 \beta_{v} / 64\right)\left(\omega L_{y}^{2} L_{y}^{2} / 24\right) \\
& =k_{n t}\left(\omega L_{x} L_{y}^{2} / 24\right)
\end{aligned}
$$

k_{1} is higher than k_{s} but it is lower than k_{m} for all values of r. This indicates that the equivalent uniform loading overestimates the support moments while it underestimates the span moments. The maximum variation is about 6.7% for support moments and 11.1 $\%$ for span moments, which occurs when r equals 1. In the EBCS2 loading condition, k_{n} varies from \geqslant by about 2.5%; while k_{m+} varies from k_{m} by 12.5% to 1.6% for r equals 1 to 2 , respectively.

Sides 3\&4,

Figure 20 Fixed beam loeded with triangular loeding

Using the sctual triangular loeding $[2, A]$,

$$
\begin{aligned}
M_{\operatorname{man}} & =(5 / 16)\left(\omega L_{x}^{3} / 12\right) \\
& =k_{\sim}\left(\omega L_{x}^{3} / 12\right) \\
M_{\max }^{+} & =(3 / 8)\left(\omega L_{x}^{3} / 24\right) \\
& =k_{m}\left(\omega L_{x}^{3} / 24\right)
\end{aligned}
$$

Using equivalent uniform loeding (Table 1),

$$
\begin{aligned}
& M_{\text {max }}=k_{3}\left(a L_{x}^{3 / 112)}\right. \\
& M_{\text {max }}^{\prime}=k_{3}\left(a L_{x}^{3} / 24\right)
\end{aligned}
$$

Using the new code (EBCS2) recommendation [2,4,11],

$$
\begin{aligned}
M_{\operatorname{mx}} & =\left(117 \beta_{n} / 128\right)\left(\omega L_{y} L_{y}^{2} / 12\right) \\
& =k_{n}\left(\omega L_{x} L_{y}^{2} / 12\right) \\
M_{\max } & =\left(63 \beta_{y} / 64\right)\left(\omega L_{X} L_{y}^{2} / 24\right) \\
& =k_{n+1}\left(\omega L_{x} L_{y}^{2} / 24\right)
\end{aligned}
$$

Here again the comparison shows that the equivalent uniform load is higher than the actual triangular loading for support moments by 6.7% while it is lower for the span moments by 11.1%. In the EBCS2 loading condition, k_{n} is less than $\boldsymbol{k}_{\mathrm{s}}$ by about 2.5%; while $\boldsymbol{k}_{n \text { t }}$ is less than k_{m} by 12.5%.

Case 4 Fixed along the two adjacent sides

Side 1,

Figure 21 Propped cantilever beam loaded with trapezoidal loading

Using the actual trapezoidal loading [2,4$]$,

$$
\begin{aligned}
M_{\max } & =\left(0.4-16 r^{2}\left(220-81 r+7.8 r^{2}\right) / 15000\right)\left(\omega L_{,} L_{y}^{2} / 8\right) \\
& =k_{s}\left(\omega L_{x} L_{y}^{2} / 8\right)
\end{aligned}
$$

Using equivalent uniform loading (Table 1),

$$
M_{\max }=k_{1}\left(\omega L_{x} L_{y}^{2} / 8\right)
$$

Using the new code (EBCS2) recommendation [2,4,11] ,

$$
\begin{aligned}
M_{-} & =\left(117 \beta_{J} / 128\right)\left(\omega L_{L} L_{j}^{2} / 8\right) \\
& =K_{m}\left(\omega L_{L} L_{3}^{2 / 8)}\right.
\end{aligned}
$$

Negative moments are slightly overestimated by the equivalent uniform loading since k_{1} is greater than $\frac{5}{4}$ for all values of r; and the maximun variafion is 9.6% (i.e. when $r=1$). The coefficient K, for the EBCS2 louding has a 2.4% to 4% variation from K_{r}

Side 2,

Using the actual trapezoidal loading $[2,4]$,

Figure 22 Propped cantilever beam loaded with trapecoidal loading

Using equivalent uniform loading (Table l),

$$
H_{\max }=k_{2}\left(\omega_{1} L_{x} L_{4}^{2 / B}\right)
$$

Using the new code (FIBCS2) recommendation $[2,4,11]$,

$$
\begin{aligned}
A H_{\max } & =\left(117 \beta_{n} / 12 R\right)\left(\omega L_{x} L_{*}^{2} / 8\right) \\
& -k_{\pi}\left(\omega H H_{r} J_{n}^{7 / R)}\right.
\end{aligned}
$$

Negative moments are slightly overestimated by the equivalent uniform loading since k_{2} is preater than k for all values of r, and the maximum variation is again 9.6% (i.e. when $r=1$). The coefficient K_{4} for the FBCS2 loading has a 0.1% to 4.6% variation from k_{s}

Side 3,

Fipure 23 Propped cantilever bearn loaded with triangular loading

Using the actual trangular loading [2,4],

$$
\begin{aligned}
A_{\max } & =(2282 / 9375)\left(\omega L_{x}^{3} / 8\right) \\
& =k_{t}\left(\omega L_{x}^{1} / 8\right)
\end{aligned}
$$

Using equivalent uniborm toading (Table l),

$$
M_{\max }=k_{3}\left(\omega_{x}^{3} / 8\right)
$$

Using the new code (EBCS2) recommendation $[2,4,11]$,

$$
\begin{aligned}
A H^{2} & =\left(117 \beta_{F} / 128\right)\left(\omega L_{x} L_{y}^{2} / 8\right) \\
& =K_{m}\left(\omega L, L_{y}^{2} / \delta\right)
\end{aligned}
$$

Here again the comparison shows that the equivalent uniform load coefficient k_{1} is higher than k for the actual triangular loading, overestimating the suppor moment The coefficient K_{π} for the EBCS2 loading has a 2.4% variation from k_{s}

Side f

Figure 24 Propped cantilever beam loaded with riangular loading

Using the actual inangular loading $[\mathbf{2}, 4]$,

$$
\begin{aligned}
M_{\operatorname{mix}} & =(1141 / 3125)\left(\omega L_{x}^{3} / 8\right) \\
& =k_{x}\left(\omega / T_{x}^{3} / R\right)
\end{aligned}
$$

Using equivalent uniform loading (Tabie 1),

$$
M_{\max }=k_{4}\left(\omega L_{x}^{3} / 8\right)
$$

Using the new code (EBCS2) recommendation $[2,4,11]$,

$$
\begin{aligned}
M_{\max } & =\left(117 \beta_{y} / 28\right)\left(\omega L_{x} L_{v}^{7 / 8)}\right. \\
& =k_{v}\left(\omega L L_{s} L_{s}^{7} / 8\right)
\end{aligned}
$$

Comparison, in this case, shows that the equivalent uniform load cosficient k_{d} is hidher than the k, value for the actual riangular leading, again overestimating the support moment. The coefficient K_{*} for the EBCS2 loading has a 0.1% variation from $\boldsymbol{k}_{\boldsymbol{s}}$.

Other panel suppon cases can be similarly investigated One may conclude that the equivalent - miform foadng coefficients derived in this paper werestimate suppor moments while they underestimales the span moments. Except for very few caves, the rew code nocommended coefficients produce moments which are closer to the ones produced by the triangular or trapezoidal loadings

To check whether the total loeding carried by the four supporting beams is equal to the total load within a panel, the two values are campared as follows.

Total load within a panel $=\omega L_{z} L_{y}$,
According to ESCP2, the four supporting beams carry the following total load (Table 2),

$$
\begin{aligned}
W & =k_{1} \omega L_{x} L_{y}+k_{2} \omega L_{x} L_{y}+k_{3} \omega L_{x}^{2}+k_{4} \omega L_{x}^{2} \\
& =\left(k_{1}+k_{2}+r\left(k_{2}+k_{4}\right)\right) \omega L_{2} L_{y} \\
& =k_{\text {max }}(\omega) L_{x} L_{y}
\end{aligned}
$$

According to EBCS2, the four supporting beams carry the following total loed,

$$
\begin{aligned}
W & =\beta_{1} \omega L_{x} L_{y}+\beta_{2} \omega L_{x} L_{y}+\beta_{3} \omega L_{x}^{2}+\beta_{4} \omega L_{x}^{2} \\
& =\left(\beta_{1}+\beta_{2}+r\left(\beta_{3}+\beta_{4}\right)\right) \omega L_{x} L_{y} \\
& =\beta_{x x}(\omega) L_{x} L_{y}
\end{aligned}
$$

For very few possible support conditions of slabs and for some values of $r, k_{\text {bat }}$ varies between 0.94 and 1.13. However, $k_{\text {ba }}$ for most of the cases equals unity. $\boldsymbol{\beta}_{\text {vo }}$ on the other hand is varying between 0.99 and 1.0125.

CONCLUSION

The time and effort required in transferring the slab loading to the four supporting beams can be zonsiderably reduced by using the equivalent uniform load coefficients derived in this paper. These zoefficients are based on the Ethiopian standard code If practice ESCP2 recommendation which gives, in the orm of a simple equation, the equivalent uniform load veefficients for triangular and trapezoidal loadings on ,eams. Values are given for all the possible slab aupport conditions as well es for different side ratios of ilab panels.
n trying to verify the results of this study, the following utcomes have been realised:

The ESCP2 recommended proportion of slab loading (i.e. 1:1 and $2: 3$ ratios) follows the pattern for the yield line analysis of isotropic slabs.

For continuous beams, the negative (support) moments by the equivalent uniform load are overestimated by up to 11.1% depending on the slab support condition and panel side ratios, while the positive (span) moments are underestimated by up to 9%. The EBCS2
recommended coefficients result in moments which vary from the actual triangular or trapezoidal loading by less than 5% for severil of the cases and up to 12.5% in some cases.

- The total load carried by the four supporting beams of a panel as obtained using the equivalent uniform load coefficients (Table 2) varies from the actual total panel load between -6% to 13% for very few cases only. both the ESCP2 \& EBCS2 coefficients provide a reasonablly correct loading.
- The EBCS2 loading, though being uniform, has to be applied on the middle three quarters of the span Therefore, the use of other appropriate equations to determine the fixed-end-actions for the beams so loaded would be essential for the further analysis .

Some of these outcomes suggest that further investigation is still required in order to determine the uniform load coefficients with a better accuracy. For the ESCP2 recommended and currently employed design proceture, however, the coeflicients derived in this study are satisfactory and sufficient.

ACKNOWLEDGEMENT

I am graleful to Prof. Negussie Tebege and Ato Bekele Mekonen for the encouragement, advise and support they provided ine and especially for introducing me to the revised Ethiopian Building Code Standard (EBCS2). Thanks is also due to Dr. Asnake Adarnu for his encouragement and advice which helped in making this work become successful.

REFERENCES

[1] Ethiopian Standards Code of Practice, ESCP2: PartI, Ministry of Construction, Addis Ababa, 1983, pp. 97.
[2] Gunter Baum, Basic Values on Single Span Beams, Springer - Verlag, Berlin/ Heidelberg, 1965.
[3] P. Dayaratnam, Design of Reinforced Concrete Structures, Oxford and IBH Publ. Co. Ltd., New Delhi , $3^{\text {N }}$ Ed., 1988.
[4] William Griffel, Hardbook of Formulas for Stress and Strain, Federick Ungar Publ. Co. New York, 1966.
[5] William Griffel, Plate Formulas, Federick Ungar Publ. Co., New York, 1968.
[6] F. K. Kong. R. H. Evans, Reinforced and Prestressed Concrele, ELBS, V㫜 Nostrad Reinhold, Berkshire, UK, $3^{\text {re }}$ Ed., 1987.
[7] E.G. Nawy, Reinforced Concrete: A Fundancntal Approach, Prentice Hail, New Jersey, $2^{\text {m4 }}$ Ed, 1990
[8] S. Timoshenko, S. Woinowsky - Krieger, Theory of Plates and Shells, Mc Graw Hill Book Co., New York, 1959.
[9] G. Winter, L.C. Urquahar, C. E. ORourke, A. H Nilson, Designi of Concrete Structures, Mc Graw I Lill Book Co., New York, $9^{\text {a }}$ Ed, 1979.
[10] Jones, L.L. and Wood, R.H., Yield Line Analysis of Siabs, Thames and Hudson, Chatto and Windus, London, 1967.
[11] Eithiopian Building Code Standards for Stuctiral Use of Concrete, EBCS2, Minusiry of Works and Urban Development, Addis Abatra, 1995

