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ABSTRACT 

Low strea111jlow, which is one a&pect of drought, 
constillltes one of the extremes of. the hydrological 
regime. Among the low flow characteristics of riven, 
low flow frequency ana/y&is, that is fundamental to a 
wide range of design and operational problems in 
area of both water quality and quantity, is the one. 
This ~r deals with the introduction of the 
nonparamen:;c meth<xh in the low flow frequency 
ana/y&i.f and then moire comparative evaluation on the 
magnilllde of low flow quantile con-espondi~g to a 
given relllrn period with the parametric statistic:&. A 
e11rrently rued approach to low flow frequency 
ana/y&is is based on the 088umption made that the 
di&tributionfunction describing the annllal minimum 
low flow data u known, which is never known exactly. 
Recently, nonparametric method of estimating 
probability distribution functions have been 
developed, which doesn't require a distributional 
a88umption. This involves the rue of a suitable 
smoothing function known a& a kernel. The fixed 
kernel nonparametric method is proposed and 
developed for estimating low flow quantiles. Ba&ed on 
annual minimum low flow data and Monte Carlo 
Si•ulation Experiments, the proposed model is 
eotnpand with Weibull models both for its descriptive 
and predictive ability. Computed re/bits showed that 
tlte f~d kernel estimator ha& small bia& and root 
mean square error in low flow quantile estimates. 
App/icalion of the model to data from the Blue Nile at 
Eldeim {Sudan) and Komali (South Africa) riven have 
shown that the nonparametric approach is viable 
alternative lo the Weibull models. It is, therefore, 
concluded that the nonparametric method is accurate, 
unif<>n11, and parlicularly suitable for the multimodal 
data. 

INTRODUCTION 

Although investigation of extremes of hydrological 
events (maxima and ininima) attracts a great deal of 
research, the methodology oflow flow computation is 
much less reflected in the available hydrological 
literature than the 'theory of floods. Some of the 

techniques that are commonly used to study low flows 
are:(l) . Flow dW'ation CW'Ves;(2) Low-Flow spells; 
aod(3) Low flow frequency analysis. This paper only 
deals with single site analysis of low flow frequency 
analysis by using two' different distinct approaches
parametric and nonparametric frequency analysis 
procedures. 

A currently used approach to low flow frequency 
analysis is based on the concept of parametric 
statistical inference. In this analysis the assumption is 
made that the distribution function describing annual 
minimwn flow data is known. Several estimation 
methods exist which may be used in these 
circumstances to obtain estimates of parameters and 
quantiles. 

However, in hydrological context, there is no 
compelling evidence in favor of any one parametric 
distributioo or fitting procedure. Some of the situations 
that cau8e problems with parametric methods are: 
selection of a particular distribution, parameter 
estimation, most of conunonly used distributions are 
wUmodal and sometimes a method can completely fail 
to produce a solution for no obvious reason. Therefore, 
it is evident that the parametric method, which depends 
on prior knowledge of the particular distribution 
function, has its limitations [4] and, as pointed out by 
(6), " no amount of statistical refinement can 
overcome the disadvantage of not knowing the 
frequency distribution involved". 

To overocme some of the limitations of the parametric 
method, there have been recent 
developments in the theory of nonparametric statistics 
that could be another pos&ble approach to the low flow 
frequency analysis to estimate the probability density 
functioo nooparameterically. Such a method allows the 
annual minimwn flow data to "speak for themselves", 
i.e. it does not require assumption of any functional 
form of density; it has also the ability of estimating 
multimodal distributions and therefore, can be very 
attractive in hydrological applications, and is well 
worth considering. The application of nonparametric 
methods foc the estimatioo of flood quantiles have been 
investigated in the last decade. For flood studies, it has 
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been shown that the nonparametric approach is 
competitive and presents a viable alternative to the 
parametric models [l,2,3,8]. This study is an attempt to 
introduce this important data analytic tool closer to 
practical applicatioo in the low flow frequency analysis. 
Hence, the main theme of this paper is the development 
of an alternative, relatively new, nonparametric kernel 
estimation procedures for the low flow frequency 
analysis and compares the quantile estimates with 
parametric models based on real world data and Monte 
Carlo simulation technique using the criteria of the 
descriptive ability and predictive ability of a model. 

PARAMETRIC MODELS 

Determination of design low flow is one of the most 
oommooly perfooned analyses in hydrology. Very often 
these are obtained from statistical low flow frequency 
analysis. Such an analysis asswnes a priori knowledge 
of probability distribution, i.e, a histogram of obseived 
low flow data is assumed to be a sample of a 
population which has an Wlderlying parent distribution. 
As a result, the histogram of the observed data is fitted 
to a single probability density function of some well 
known statistical distribution. The asswned distribution 
is fitted to the data based on the values of parameters 
estimated from that data. The required magnitude 
return period relationship is derived from the assumed 
distribution. The term "parametnc" is used to describe 
this procedure. A nwnber of distributions have been 
found to be applicable low flow hydrology. 

In a study of low flows of rivers selected from all parts 
of USA, Matalas [IO] investigated the suitability of 
four theoretical probability distributions for low flow 
data. The principal requirements of a suitable 
distributions to fit an annual minimwn flow series is 
that it should be skewed and must have a finite lower 
limit greater than or equal to zero [15). The Weibull 
distribution satisfies both these criteria. It has often 
been recommended for use as the statistical distribution 
for low flow frequency analysis. 

Weibull Distribution and Parameter Estimation 

The Weibull distribution is a reverse form of the 
Extreme Value Type III (EV3) distribution used in 
flood frequency analysis. That is, if a variate x 
conforms to the EV3 distribution, then -x conforms to 
the Weibull distribution. The probability density 
function (pdt), f(x) and the associated cwnulative 
density function ( dt), F (x) of the Weibull distribution 
are given by Eqs. (I) and (2), respectively. 

Tournal of EAEA, Vol 14, 1997 

(1) 
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where a •. al and Si are shape, scale and lower bound 
displacement parameters respectively, which must be 
positive. F(x) is also defined as the probability. of a 
drought exceeding x. Weibull distribution can occur in 
the two parameter or three parameter form depending 
on third parameter, the lower bound. When the lower 
bound parameter 63 equals zero (i.e. for small streams), 
the distribution takes the two parameter form. 

The Parameters of the Weibull distribution can be" 
estimated by either graphical curve fitting method or 
objective methods such as the Method of Ordinary 
Moments (MOM), Method of Maximwn Likelihood 
(ML) or by the Probability Weighted Moments 
(PWM). These procedures are described by Nathan 
and McMahon [11] and Gunasekara [7]. Nathan and 
McMahon [ 11 ], usmg 987 samples of natural low flow 
data from 134 catchments located in southeastern 
Australia, have reported a study which analyses the 
relative performance of the MOM, ML and PWM and 
foWld that the three estimation methods provide distinct 
sets of quantile estimates. An extensive simulation 
comparison of the six procedures formulated by the 
combination of the two forms of the Weibull 
distribution and the three objective methods of fitting 
is presented by Gunasekara [7]. His investigation was 
based on Moote Carlo experiments using large amount 
of ~thetically generated data covering a wide range of 
populations. Both the above investigators have 
observed that the methods can fail to fit the 
distribution. The failures can be caused by the lower 
bound parameter being estimated is either less than 
zero oc greater than the observed minimwn discharge. 
Sometimes a method can completely fail to produce a 
solution for no obvious reason. All investigations, so 
far, have not resulted jn a universally accepted practice 
foc choosing a particular method of fitting the Weibull 
distribution for the use in low flow frequency analysis. 

NON-PARAMETRIC MODEL 

The. nonparametric density estimation has been a part 
of the statistics literature since the l 960's (and with 
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eYer" ioaeasing prooUneooc there). only recently bas its 
walking its way into stochastic hydrology literature. A 
recent statistical literature review of nonparametric 
density cstimatioo can be f~ in (16, 17). 

The oooparametric approach does not make any 
MSUmptico regarding the parent distribution. In its 
simplest form the nonparametric approach would 
ccmprise of smoothing the histogram of the observed 
flows and carefully extrapolating the tail of this 
histogram. The required magnitude return period 
relatiooship can be read directly from the smoothed 
histogram. The difficulty of the method clearly lies in 
extrapolation beyood the observed data. 

Among the several different approaches that can be 
used in estimating the probability density function of 
obscrvati<m by the noo-parametric method, the kernel 
estimator, which is the most popular and well 
developed, theoretically, nonparamettic estimation 
procedure, is used in this study. In its simplest form, 
the fixed kernel estimate of the probability density 
function ftx)at each point x is defined for wrivariate 
data by [1]: 

A I n [ X - X;) 
f(x) =-EK --

nh ;.1 h 
(3) 

where h is a positive coostant smoothing factor because 
it controls the degree of smoothness that the resulting 
function exhibits, KO is a probability density function, 
referred to as the smoothing kernel function~ and a 
sample of observations x 1, ••• ,x,. form a random sample 
from the unknown distribution. The kernel estimate is 
non-negative and integrates to one. 

The Choice of Kernel Function for 
Nonparametric Curve Estimation 

In nonparametric frequency , the choice of the kernel 
fuoctioo is not aitical to the perf ormaoce of the method 
as various kernels lead to comparable estimates (13). 
However, it must satisfy the following cooditions [ 16]: 

j K(x)dx = 1.0 (4) 

J xK(x)dx = 0.0 (5) 

I x 2K(x)dx = c~o.o (6) 

Where C is the kernel variance. 

Because different kernels will lead to different 
estimates in tails of distribution, a kernel with a 
variable degree of symmetry is cwrently being 
investigated as a solution to this problem [9). A kernel 
following a normal distribution, in other words a 
Gaussian kernel, with standard deviation equal to h, 
was selected in this study and is given by: 

K(x) =-1-expt (x-x;)2} (7) 
{iih 2hl 

Estimation of Smoothing Factor h 

The selection of the smoothing factor h is, however, 
critical. Many papers that address the problem of 
detennining an optimal kernel use Minimwnazation of 
integrated mean square error IMSE as optimal 
aiterion. Various numerical algorthims for computing 
h perform similar to each other [2]. They are all close 
to the optimal value that has predicted theoretically. 
This value which is only suitable for quadratic kernel 
is given by Eq. (8) 

h = t f (Xj - X;) 

i- l ; • 1 ./Sn(n _ _!Q,) (8) 
3 

One method of computing h is to minimiu, by means 
of a cross-validation teclmique, IMSE [16]: 

IMSE=E Jlicx)-j{x)fdx 

= E{Jfl.x)2dx- 2 Jft.x")f(x)dx (9) 

+ Jftx)2dx } 

where ftx) is an estimate of the wOOl<>wn density 
functionj(x). 

Because IMSE must be minimized with regard to h, the 
Wt term in Eq. (9), which does not involve f(x), can be 
discarded. ~. 1he sum c:1 the first two terms are to be 
minimized. Scott and Terrell [ 14] have shown that the 
cross-validation procedure leads to consistent and 
asymptotically optimal nonparametric density 
esbmales. In the cross validation, Nim•tCl6 of j(x) are 
coostructed each time using all the data points except 
one. Thus, i.;(x)is the nooparainetric kernel estimate 
ignoring a single data point. x,: 
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(IO) 

It has been shown [ 16) that: 

l ~ A f.A E-;; ~ f_ ,(x,) = E fl.x)/{x)dx (11) 

Inserting Eq. (I I) into Eq. (9) and ignoring its last 
term, the risk function to be minimized, R(h), which 
depends on the smoothing factor h, is: 

R(h)=E )J.Jcx)
2
dx - '!:.Ef-;(x) _(12) l n ,.1 I 

where ]_;(x) is the density estimate based on the entire 
data set except for x,, beginning with an asswned h. 
'Ille basic principle of the least squares cross-validation 
is to construct an estimate of R(h) from th~ data 
them,c;elves and then to minimize this estimate over h to 
give the smoothing factor. After some computations, it 
has been shown [I 3] that Eq. (12), for normal kernel as 
defined by Eq. (7), is equivalent to: 

l ( t n 2 d,J R(h) =-- l+ E-cxp(-) 
2{itnh r•I j•I n 4 

-t 't 4..fi. exp( d;i)l 
r•I J•I n l 2 

(13) 

where dij= -((xi-xj)/h)2. 

Setting the derivative of R(h) with respect to h equal to 
zero results in the following equation: 

-- E Eexp(....!l..) 
l { n n d 

2{iinh i•l,i•j J•I 4 

((1 - 4fFexp(diJ) 
n - 1 4 

(14) 

x-x x - x } 
(-'-1 - 1)(-'-1 +l)-1) = 0 

h h 

Therefore, the value of h can be determined 
numerically by solving Eq. (14) by using single 
optimization methods for given sample and kernel. A 
fast algorithm for calculating h can be done with 
golden section search method. The initial guess for the 
optimization may be obtained by solving Eq. (8). Then 
using an optimal value of h, it is possible fo estimate 
the density function by Eq. (3). 

NUMERICAL APPLICATIONS 

Annual minimwn low flow series for the Blue Nile at 
Eldeim station (Sudan)and Komati (South Africa) 
rivers were selected for numerical demonstrations. The 
statistical characteristics of these rivers are shown in 
Table t. As an illustration to the methods only the 
results of the Blue Nile will be presented. The 
discharge data for the Blue Nile at Eldeim station for 
the period (1921-1991 ), based on IO-day means were 
obtained from Ministry of Irrigation and Water 
Resources-Sudan. Discharge data for the 1921-1991 
based on monthly basis is also available. No missing 
data was encow1tered. The data was subject to quality 
control procedures. The annual minimum flow series 
for the Blue Nile at Eldeim station was formed by 
selecting the lowest flow occurring in each year of 
record. 

Table l: Data Selected for the Analysis 

River Period of flow Sample Arithmetic Standard Coefficient Coefficient 
records, years size mean Deviation of variation of Skewness 

n (l06m3/d) (106m3/d) 

Blue Nile 1921-91 71 8.173282 2.87358 1.117870 1.117870 

Koma ti 
L.. 

1941-90 so 2.905241 1.567646 0.2208143 0.2208143 
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The nooparametric kernel density estimation procedure 
requires only one parameter, the smoothing factor h 
which is optimized for the given sample. It is obtained 
by solving Eq. (14), and the value is h = 0.412695. The 
nonparametric density estimation for the Blue Nile at 
Eldeim is calculated by Eq. (3)and the results are 
presented in Fig. l(a). It can be observed that the 
probability density of annual minimum flow series at 
Blue Nile is distinctly bimodal. Therefore, if 
nonparametric density analysis bad not been 
performed, it would have been possible to mistakenly 
conclude that the annual minimwn flow of the Blue 
Nile at Eldeirn come from a Weibull distribution 
(unimodal)~ but, in fact, the river follows a multimodal 
distribution . Hence, nonparametric frequency analysis 

can be considered as an important screening tool in 
distribution identification. This ability to analyze 
multimodal density by nonparametric method is 
particularly useful in hydrology. 

The frequency curve is plotted on the EVl paper on 
which the Gringorton formula 

F( .) i-0.44 . I 2 I = I = • ,. .. ,n (IS) 
n +o.12 

is used to calculate the plotting positions for recorded 
sample data. Fig. l(b) shows that the nonpara-metric 
kernel estimator can fit the real data points closely. 

(a) NON PARAMETERIC . (FKOE) DENSITY ESTIMATION 
BLUE NILE AT ELOEIM ( 1921-1991) 
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Figure I Nonparametric fixed kernel density estimation and frequency cwve at Blue Nile at Eide~ (Sudan) 
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COMPARISON OF NONPARAMETRIC 
WITII PARAMETRIC MODElS 

The aiteria of the descriptive ability and the predictive 
abjlity of a model are used for comparison of the 
proposed nonparametric method with the Weibull 
parametric models. The predictive ability criterion 
relates to the ability of a chosen model to describe or fit 
the low flow data while the predictive ability relates to 
procedure's ability to achieve its assigned task that is to 
have minimwn bias and maximwn efficiency for 
quantile estimates[S]. 

Test of Descriptive Ability 

1be annual minimwn low flow series at Blue Nile was 
fitted to the two parameter and the three parameter 
Weibull distribution coupled with three objective 
parameter estimation procedures. This resulted in six 
different parametric models, namely, 2P/MOM, 
2P/ML, 2P/PWM, 3P/MOM, 3P/ML and 3P/PWM 
where 2P and 3P denotes the two parameter and the 
three parameter Weibull distribution respectively. 

Table 2 gives estimation of parameters by different 
methods. Only the 3P/Ml model failed to obtain a 
solution because the estimated lower bound parameter 
was calculated as being less than zero. 

Table 3 summarizes theoretical low flow quantile and 
compared with those estimated by the nonparametric 
model. The results in Table 3 indicates that the 
nonparametric method gives low flow quantile 
estimates which are comparable with those obtained by 
applying different assumed Weibull distributions. The 
frequency curves of quantile estimates by the Weibull 
models and nonparametric method are plotted on the 
EV! probability paper with recorded data points, see 
figure 2. It can be seen that the two parameter Wcibulll 
models arc underestimated while the three parameter 
Weibull models are overestimated when return periods 
are larger than 10 years. The nonparametric kernel 
estimators can, on the other hand, fit the observed data 
more closely 

Table 2 Estimation ofParametc~ 

Distribution Parameter/ MOM PWM ML 
Method of Estimation 

2P(2 Parameter) Weibull e. 3.11310 3.4147~ 2.935927 
e, 979.8093 1880.079 662.7628 

3P(3 parameter) Weibull a. l.41702 176022 1.4576 
62 8.19769 18.09323 9.9946 
a) 4.15804 3 56040 -395.87 

Table 3: Quantile Est1I11atcs for the Blue Ntlc by Paramctnc and Non-Parametric Models 

Return Parametric analysis Nonparametric analysis 

period(yr) 2P/MOM 3P/MOM 2P/PWM 3P/PWM 2P/ML FKDE 

2 8.1226 7.5658 8.1700 7.7676 8.0679 7.7891 

5 5.6439 5.6895 5.8624 5.7701 5.4840 6.1162 
-

20 3.5194 4.7006 3.8114 4.5188 3.3237 4.4149 

50 2.6091 4.4392 2.9012 4.1249 2.4199 3.8488 

100 2.0849 4.3298 2.3647. 3.9400 1.9077 3.5872 
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Figure 2 Comparison of parametric and nonparametric low flow frequency cwve at Blue Nile at Eldeim (Sudan). 
Sample siz.e n=71, Mean=S. l 73•1066 (m3/day), Cv=0.3516 and Cs=l .17564 

Tat of predictive ability 

Synthetically generated data were used to compare the 
performance of the various methods used in this study 
of low flow frequency analysis. A population 
conforming to the Weibull distribution was chosen, 
largely because of its recanmendation and it fits a wide 
range of low flow observations. Such a choice is rather 
arbitrary and the a-edibility of simulatioo rests oo the 
a-edibility of the Weibull parent to sinalate empirical 
low flow data. It, of course, should be recognized that 
the Weabull distribution does not encounter all diverse 
hydrological regions. However, having accepted the 
Weibull distribution as the low flow parent, it is 
possible to obtain population estimates of the T -year 
low flow for the simulated data. 

Synthetic samples were generated from the Weibull 
distribution with given parent parameters and sample 
size. The range of the sample lengths used was I 0 to 
100 with an incmnent of 5 and the return periods used 
were 100, 50, 20, S, and 2 years. Altogether 12 
synthetic populations were used with 8, vatying from 
1.5 to 4.0, Bi vacying from 0.3 to 4 and 83 varying from 
0 to 0.5, covering almost all practical situations. The 
proposed oooparametric kernel estimator and six 
Weibull models were fitted to each sample, and the 
bias and root mean square error (RMSE) of quantile 

estimates were calculated by Eqs. (16) and (17). 

l M X -X 
BIAS(1)=- E i.T T *100% (16) 

M 1-1 X7 

and 

Where T is the return period; M is the number of 
Moote Carlo repetitions(M = I 000 in this study. 1000 
may arguably not be a large enough number of samples 
to produce the true values of BIAS and RMSE, but will 
suffice to cooipare the performances of the methods); 
X7 and Xrrepresents the estimated and the theoretical 
quantile values, respectively. 

Results of the predictive ability tests were plotted 
against the sample length (for example, BIAS versus 
sample length). All the plots were repeated for different 
populations and also for different return periods. A 
typical results obtained for population 81 = 2.0, 82 = I 
and~= 0.1 are shown in Figs. 3 and 4 for illustration. 

Journal of EA.EA, VoL 14, 1997 



24 

160 
140 
120 - 100 

.~ 
80 -

Jl 
60 

...... 40 
cu 20 m 

0 
-20 
-40 
-60 

10 

200 

180 

160 

- 140 
o\• 

120 -
~ 100 
Cl) 

80 
~ 

(a) Bias 

30 

(b) RMSE 

Berhanu Adugna 

so 70 90 

sample size 

Nonparametric FKDE 
9--0--0- 3P/MOM b.- A · A 2P/MOM 
t t t 3P/PWM )( -~ ··--X· 2P/PWM 
~---·~· 3P/ML ?-;-'1--V- 2P/ML 

I 

I 60 

~J 

30 so 70 90 

sample size 

Figure 3 Bias and RMSE of I 00 year flow quantile as a function of sample size forpopulation 
No.I (6 1=2.0,02=!,61=0.I and X,.,.100=0.200), (a) BIAS and (b) RMSE 

Jo11rnal of EAEA, VoL 14, 1997 



"" 
CD .... 
tO 
CD 

-*' -
CD 

of'1 
ftf 

CD 

~ 

A Monte Carlo Comparison 25 

100 100 

10 
'a) T=S 80 

"" 60 60 
(al 
CJ) 

~ 40 
40 

20 
20 

0 
~ .--.~-----------
0 

10 30 so 70 90 10 30 . so 70 90 

sample size sample size 

100 
100 1 

10 

60 
(b) T•20 80 I 

I "" 
40 

tll 
60 I 

20 
CJ) 

~ 40 

0 

20 
-20 

·40 0 

10 )0 50 ·10 90 10 j (l ~~ 7(. 9 ·J 

sample size sam~l<:: size 

100 ..----------------~·-------, 100 --------------·-----·-- i 

-40 ..._ __ ....,._...,...._.,.._ __ _..,. __ ....,.._...,....~ 
0 

10 30 so 70 90 10 30 $0 70 

sample size sample size 

Fipre 4 Bias Ind RMSE of different low flow quantile as a function of sample size for population 
No. 1( e,-2.0, e2-1, e,-0.1 and x,..., = o.572, :xi-= o.321andXr..,o=0.242). 
(a) rctuna period• 5, (b) retwn period• 20, (c) return period= 50 

Journal of EAEA, VoL 14, 1997 

I 

90 



26 Berhanu Adugna 

The following clear observation can be made based on 
the simulation results. 

(1) In contrast to the flood frequency, there is no 
significant difference among the three fitting 
procedures (MOM, ML, and PWM) in the low 
flow quantile estimation for the Weibull 
distributions. These figures show that the MOM 
performs better than the ML and PWM, and ML 
has the largest bias and RMSE for small size 
samples. 

(2) The two parameter Weibull models perform 
better than the three parameter Weibull models 
for small sample size. When the sample size 
increase, the three parameter Weibull models 
are better than the two parameter Weibull 
models, and can obtain small bias and RMsE in 
quantile estimation. Simulation experiments 
show the conclusions drawn for I 00 year low 
flow is equally valid for 50 year as well as 20 
year return periods. For low flow quantiles of 
very low return periods such as 5 or 2 years, 
there is no significant difference between·any 
procedures. 

(3) This study reveals the usefulness of 
nonparametric technique in analysis of low flow 
data generated by distinctly different 
hydrological processes Nonparametric fixed 
kernel estimator result in small bias in quantile 
estimation for different sample sizes and parent 
parameters. Its RMSE is close to the two 
parameter Weibull models when sample size is 
small and has the smallest values when sample 
size is increased. 

(4) Since the sample comes from the Weibull 
family, this is obviously advantageous to the 
Weibull models. It is expected that the bias and 
RMSE estimated by the Weibull models will 
increase if the sample comes from other parent 
distributions. However, the nonparametric 
model does not need any parent assumption and 
its density function is estimated directly from 
the samples, and there is no any relationship 
with parents. 

CONCLUSIONS 

To overcome some of the deficiencies of the 
conventional parametric approaches, there has been a 
recent trend to develop new nonparametric approaches. 
In this study, a recently developed nonparametnc 
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method is proposed, investigateti and compared with 
the parametric methods. Results in tables and figures 
illustrate an important difference in the application 
philosophy of parametric and nonparametric methods. 
The nonparametric model has some advantageous, 
mainly it is distribution free and can fit different data 
well, and disadvantageous such as the limitation of 
extrapolation. They do also nothing to avoid the 
assumption of independent. The nonparametric method 
usually gives good results for data which is long and 
can indicate the presence of multimodality in the 
analyz.ed data The nonparametric model can always fit 
sample data whereas the Weibull distribution fails in 
some instances particular for three parameter form with 
small sample size. Simulation results demonstrate that 
evenif the distribution of low flows was known (i.e, 
Weibull), then the nonparametric method produces 
small bias and RMSE. The experiments, therefore, 
clearly suggest that the nonparametric method be a 
viable alternative and provides another useful tool in 
low flow frequency analysis. 
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