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ABSTRACT

The purpose of this work is to show the self-
similarity nature and long-range. dependence of
Ethernet network iraffic. Different mathematical
and graphical techniques are used to show this
behavior. The result indeed shows the long-range
dependence or the presence of long memory in
Ethernet data traffic. A graphical proof of the self-
similarity nature of the traffic- is shown. Also
Fractional . Auto-Regressive Integrated Moving
Average (FARIMA) model is developed to capture
the long as well as the short memory properties of
the collected Ethernet traffic data. The model is
found to be in good agreement with the
periodogram calculated from the data. The model
could be used in different network application like
congestion control in high-bandwidth networks,
bandwidth allocation and the like. All the results in
this work are supported by a rigorous statistical
analysis of . the collected data coupled with a
discussion of the underlying mathematical and
statistical properties of long memory processes.

INTRODUCTION

A common assumption in modeling computer
networks is that packet arrivals occur as a Poisson
precess. However, data communication traffic
levels fluctuate over time, and delays through
periods of time giving rise to the concept of a burst
of traffic. , of traffic can be of intensity more
than five times the average utilization so that if a
user is trying to send data and it coincides with a
burst the user will experience delays. Traffic that
exhibits these wild fluctyations is known as
“bursty” traffic [5].

Works done a Bellcore Research Laboratories has
shown that network traffic is much more closely
amodeled by self-similar processes. They suggest
-that the Poisson process is inadequate as a model of
the packet arrival process and that-a fractal process
is necessary to model the observed results.
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Understanding the nature of traffic in high-speed,
high-bandwidth communications systems such as
B-ISDN is essential for engineering, operations,
and performance evaluation of these networks. In a
first step towards this goal, it is important to know
the traffic behavior of some of the expected major
contributors to future high-speed network traffic.

Intuitively,  self-similar phenomena  display
structural similarities across all (or at least a very

_wide range of) time scales. In the case of Ethernet

LAN traffic, self-similarity is manifested in the
absence of a natural length of a “burst”; at every
time scale ranging from a few milliseconds to
minutes and hours, bursts consist of bursty sub-
periods separated by less bursty sub-periods.

Leland and Wilson present a preliminary Statistical
analysis of the fractal nature of a high-quality data
collected from.Bellcore Morristown Research and
Engineering Center and comment in detail on the
presence of “burstiness” across an extremely wide
range of time scales. This self-similar or apparently
fractal-like behavior of aggregate Ethernet LAN
traffic is very different from conventional
telephone traffic.

Because of the growing market for LAN
interconnection services, LAN traffic is rapidly
becoming one of the major potential traffic
contributors for high speed networks of the future
such as B-ISDN. Another expected major
contributor is Variable-bit-rate (VBR) video
service.

Ethernet is the most widely used local area network
(LAN) technology [2]. The original and most
popular version of Ethernet supports a data
transmission rate of 10 Mb/s. Newer versions of
Ethemnet. called "Fast Ethernet" and "Gigabit
Ethemnet" support data rates of 100 Mb/s and 1
Gb/s (1000 Mb/s). An Ethernet LAN may use
coaxial cable, special grades of twisted pair wiring,
or fiber optic cable. "Bus" and "Star" wiring
configurations are supported. Ethernet devices
compete for access to the network using a protocol
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called Carrier Sense Multiple Access with
Collision Detection (CSMA/CD).

The main objectives of this work [1] are:

1. To establish in a statistically rigorous manner
the self-similarity characteristic or, to use a
more popular notion, the fractal nature of
Ethernet traffic.

2. To illustrate some of the differences between
self-similar models and the standard models
for packet traffic considered in the literature.

3. To develop a model which is capable of
capturing the long-range dependence as well as
the short memory properties of the Ethernet
data traffic.

Accordingly this work is divided mto four sections
described as follows:

In section two an introduction to Ethernet media
access protocol is presented. At the end data
collection method for this work is also presented.

Section three wiil look into the details of the
statistics of stationary processes with long memory.
Here the relevant theory is presented. Also a
detailed discussion of the Fractional Auio
Regressive Integrated Moving Average (fractional
ARIMA) model is presented, which is of special
interest to long memory.

Section four contains a discussion of the different
testing methods for long memory. The R/S
analysis, the Variance Plot method and the MLE
are presented.

‘The final section contains the summary and
conclusion part of this work. Here the results of the
work are highlighted.

ETHERNET

In this section the different kinds of Ethermnet media

access protocol, the Carrier Sense Multiple Access
with Collision detection (CSMA/CD) and the
access mode for full-duplex Ethernet are discussed.
CSMA/CD is what differentiates Ethemet . from
other LAN technologies. After CSMA/CD, the
other mode of operation for Ethemet, which
bypasses CSMA/CD, is the Full-duplex Ethemnet,
which allows a station to receive and transmit

simultaneously. It is discussed after CSMA/CD
Finally some statistical behaviors, on.the collected
daia are analysed.

Ethernet Media Access Control

This section describes the twe media access control
protocols defined for Ethemet "half-duplex”, and
"fuil-duplex"”.

Half-Duplex  Ethernet (CSMA/CD  Access
Protocsi)

Half-Duplex Ethernet is the traditional form of
Ethernet that uses the CSMA/CD protocol[2]. With .
CSMA/CD two or more stations share.a common
transmission medium. To transmit a frame, a
station must wait for an idle period on the medium
when no other station is transmitting. It~ then
transmits the frame by broadcasting it over the
medium such that it is "heard" by all the other
stations on the network. If another device tries to
send data at the same time, a "collision" is said to
occur. The transmitting staticn then intentionally
transmits a "jam sequemce” io enmsure all stations
are notified the frame transmission failed due to a
collision. The station then remains silent for a
random period of time before atiempting to
transmit again. This process is repeated until the
frame is eventually transmitted successfully.

Full Duplex Ethernet

The release of the JEEE 802.3x standard defined a
second mode of operation for Ethernet, called “full-
duplex”, that bypasses the CSMA/CD protocol.
Fuli-duplex mode allows two stations to
simuitaneously exchange daia over a point to point
link that provides independent transmit and receive
paths. Since each station can simultaneously
transmit and receive data, the aggregate throughput
of the link is effectively doubled. For example, A
10 Mb/s station operating in. full-duplex mode
provides a maximum bandwidth of 20 Mb/s.

Full-duplex operation is restricted to links meetmg
the following criteria:

e The physical medium must be .capable of

supporting simultancous transmission and
reception  without imterference.  Media

Journal of EAEA, Vol. 17, 2000



84 Analysis of Ethernet Traffic

specifications which meet this requirement are:
10-Base-T; 10Base-FL, 100Base-TX,
100Base-FX, 100Base-T2, 1000Base-CX,
1000Base-SX, 1000Base-LS, and 1000Base-T.
The following media specification cannot
support full duplex: 10Base5, 10Base2,
10Base-FP, 10Base-FB, and 100Base-T4.

o  Full-duplex operation is restricted to point to
point links connecting exactly two stations,
Since there is no contention for a shared
medium, collisions cannot occur. Frames may
be transmitted ptowdmg the required
separation of the minimum inter-frame gap.

e Both stations on-the link must be capable of,
and be configured for full-duplex operation.

Full-duplex operation offers several major
advantages:

e Throughput is doubled by permitting
simultaneous transmit and receive.

e The efficiency of the link is improved by
eliminating the potential for collisions.

e  Segment lengths are no longer limited by the
timing requirements of half-duplex Ethemet
that ensure collisions are propagated to all
stations within the required 512 bit times. For
example, 100Base-FX is limited to 412 meter
scgment length in half-duplex mode, but may
support ségment lengths as long as 2 km in
full-duplex mode.

The Data from an Ethernet LAN

In this section a close look at the basic statistical
properties of the collected data for further
investigation is done. Figs. 1 and 2 show us the plot
of the data in two time umnits.
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Figure 1 Ethernet Traffic (Bytes per Time Unit)
for Time Unit = 10ms
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Figure 2 Ethemet Traffic (Bytes per Time Unit)
for Time Unit = 40ms

Both figures show bytes count in two different time
scales, 10ms, 40ms. The second data, given in Fig.
2 is obtained by increasing the time resolution by 4.

Intuitively the two plots look very similar to one
another (in a distribution sense) and are
distinctively different from white noise i.e, an
independently, identically  distributed (‘ud)
sequence of random variables. We also see that
there exists a “burst” like traffic in all time scales.
From the plots we can see also the absence of a
natural length of a “burst”: at every time scale
bursts consist of bursty sub-periods separated by
less bursty sub-periods.

The autocorrelation function of the above data sets
are given in Figs. 3 and 4
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Figure 3 Autocorrelation function of the Ethernet
Data (10 ms data)
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Figure 4 Autocorrelation function of the Ethernet
Data (40ms data)

From these two figures the inference drawn are:

e The autocorrelation function look similar,
hence we can say that the data sets look similar
in the distribution sense.

¢ The autocorrelation function does not decay
exponentially, a slow decay is observed. Hence
‘the data set has Long Memory, or is Long
Range Dependence (LRD).

e Thesequence is not iid.

The long-range dependence nature, scale invariant
“bursty” nature of the Ethernet traffic is drastically
different from both conventional telephone and
packet traffic

The above observation lead to the conclusion that
Ethernet traffic is statistically self-similar, that
none of the commonly used traffic models is able
to capture this fractal behavior. So looking deep
into the statistics of self-similar processes is
necessary. The next section will focus on the theory
of the statistics for self-similar and Long-memory
Processes.

STATIONARY PROCESSES WITH LONG
MEMORY

In this section the statistics of stationary processes
with long-memory is discussed. As we have seen in
section 2, the statistical data from an Ethernet LAN
shows long-range dependence. So in order to
model the packet arrivals on an Ethernet LAN, the
model should posses long-memory property. This
section will give us some insight to the properties
of long memory processes and serve as a gateway

to the methods of estimation and modeling of long-
memory processes. A very detailed analysis of
these processes can be found on Jan Beran’s
“Statistics of Long-Memory Processes,” [4]

Let X~(X;=0,1,2,...) be a covariance stationary
(sometimes called wide-sense stationary) stochastic
process; that is, a process with constant mean u =
E[X,], finite variance o’ =E[(X, - 4°]. Let’s define
some of the parameters used in the statistics of X

The sample mean is given by

R A S o 1)
The autocovariance between X; and JX; is given by
y(i,))=E[(X; - )X, -p)] @)

and’the autocorrelation between X; and X; is given
by

Ve R A UY) B 3)
o
A spectral density /'defined by
2e1 co
f(A) = ;—ﬁ > plkye’™ @)
k=—a0

Processes with long range dependence (or with
long memory) have the following common
features:

e The variance of the sample mean seems to
decay to zero at a slower rate than n' Ina
good approximation, the rate is proportional to
n’® for some 0<a <I.

e The sample correlation decdys to zero at a rate
that is in good approximation proportional to &’
“ for some 0<a<1.

e Near the origin, the logarithm of the
periodogram I(A) plotted against the logarithm
of the frequency appears to be randomly
scattered around a straight line with negative

slope.
We can reformulate the above properties as
mathematical conditions on the stationary process:

e The variance of sample mean var(x ) is
asymptotically equal to a constant c,,, times n”™*
for some 0<a<l.
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¢ The correlation p(k) is asymptotically equal to
a constant ¢p times k“ for some 0<a<1.

e  The spectral density f{4)- has a pole at zero that
is equal to a constant c; times A7 for some
0<p<l1.

A slight generalization of these conditions may be
obtained by replacing the proportionality constants
Cvars Cp» Cr by so-called slowly varying functions,
i.e., functions such that for any ¢ eR, L(t)/L(x) —
1 asx - orasx — 0, respectively. Through out
this work, the above .conditions are used. Thus, the
following definition is used for a stationary process
with long memory or long-range dependence:

Definition 1 Let X, be a stationary process for
which the following holds: There exists a real
number a €(0,1) and a constant c, such that

lim p(k) e, k=1 ©)

Then X, is called a stationary process with long
memory or long-range dependence or strong
dependence, or a stationary process with slowly
decaying or long-range correlations.

~ For reasons, discussed later, the parameter
H =1-a /2 will also be used instead of . In
terms of this parameter, long memory occurs for

) Knowing the covariance (or

—_— " <1
2 .

correlations and variances) is equivalent to
knowing the spectral density f. Therefore; long-
range dependence can also be defined by imposing
a condition on the spectral density.

Definition 2 Let X; be a stationary process jfor
which the following holds: There exists a real

number fe(0, 1) and a constant c; such that
. i _ﬂ -3
lim £ (A) /e, ]| =1 ©

Then X, is called a stationary process with long
memory or long-range dependence or strong
~dependence.

It is important to note that the definition of long-
range dependence by 1 [or 2] is an asymptotic
‘definition. Tt only tells us something “about the
ultimate behavior of the correlations as the lag
tends to infinity. In this generality, it does not
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specify the correlations for any fixed finite lag.
Moreover, it determines only the rate of
convergence, not the absolute size. Each individual
correlation can be arbitrarily small. Only the decay
of the correlations is slow. This makes the
detgction of slowly decaying correlations more
difficult.

Let us now see if long-memory processes as
defined above fulfill the above postulated four
properties. This time we will specify a theorem for
the variance only since the previous definitions
cover the correlation and specjral density.

Theorem 1 Let X; be a stationary process with
long-memory dependence. Then

. '“- 2H _ 1
lim var()_ X;)/[e,n e R

i=l
Self-similar processes

Self-similar processes were introduced by
Kolmogorov in 1941 in a theoretical context.
Statisticians do not seem to have been aware of the
existence or statistical relevance of such processes,
until Mandelbrot and- his co-workers introduced
them into statistics.

The basic idea of self-similarity is much older.
Mandelbrot refer, in his famous book “The Fractual
Geometry of Nature”, for example to Leonardo da
Vinci’s drawings of turbulent flows that exhibit
coexistent “eddies” of all sizes and thus self-
similarity. A geometric shape is called self-similar
in a deterministic way if the same geometric
structures are observed [6]. In the conmtext of
stochastic processes, self-similarity is defined in
terms of the distribution of the process.

Definition 3 Let Y, be a stochastic process with
confinuous time parameter I Y, is called self-
similar with self-similarity parameter H, if for any
positive strefching factor c, the rescaled process
with time scale ct, c:'HYC13 is equal in distribution to
the original process Y,

This means that, for any sequence of time points
f,.....h, and any positive constant c,
ci GF Y, ) has the same distribution as

oty ore

(¥, Y, ) - Thus, typical sample paths of a self-
similar process look qualitatively the same,
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irrespective of the distance from which we look at
them. In contrast to deterministic self-similarity, it
does not mean that the same picture repeats itself
exactly as we go closer. It is rather the general
impression that remains the same,

Stationary increments of self-similar processes

Let Y, is a self-similar process with self-similarity
parameter H. The property

Lorado D (for g >0 &

Where =, is equality in distribution, implies the
following limiting behavior of Y, as r temds to
infinity

1 If H<0, then Y,—»; 0 (where —; is
convergence in distribution).

2 IfH =0, then Y,=,Y,;.

3 IfH>0and ¥#0, then |V|—>40

Analogously, for f converging to zero, we have

1 IfH<0and ¥Y=0, then | Y| 2,0
2 IfH=0, then Y,=,Y;
3 HKH>0, then Y,—; 0

If we exclude the trivial case Y, =0, then these
properties imply that ¥ is not stationary unless H =
0. The exception' / = 0 is not interesting, as it
implies that for all (>0, ¥, is equal to ¥; with
probability 1. For the purpose of modeling data that
look stationary, we need only to consider self-
similar processes with stationary increments. The
range of // can be restricted to H>0. The reason is
that if the increments of a self-similar. process are
stationary, then the process is mathematically
pathological for negative values of H. More
specifically, for H# < 0, Y, is not a measurable
process. The only exception is the trivial case
where ¥, = ¥,=0 with probability 1. So in the
following, we consider positive values of H only,
in particular, ¥, = 0 with probability 1.

The form of the covariance function
7,(t,5)=cov(¥,,Y,) of a self-similar process
Y, with stationary increments follows from these
two properties. To simplify notation, assume E(T})
0. Let s<t and denote by

o’ =E[(Y,-Y,,)’ 1= E(Y}?) the variance of
the increment process X; = Y;— Y., Then

HQE, -Y)'1=HQ.., -1,)"1=0*-5)™
On the other hand,

E[(Y,~Y,)*] = E[Y})+ E[Y]-2E[Y,Y,]

2,2H

=¥ + s ~ 2y, \1,5)

Hence,

1
yy(t,s):-z—cr’[t”" ~(-9)* +s¥]. (9

Similarly, the covariances. of the increment
sequence X; = Y; - ¥p, (I=1,2,3, ...) are obtained.
The covariance between X; and X}, (k>0) is equal
1o
yk)y=cov( X, X, ,)=cov( X, ,,X,,,)

1’ k+1 k k
=-E(X X))+ X)) - X))’

2 Jj=1 j=2 Jj=1

k+1

LR
j=12

= S{EWF o0 - ¥0)* 1+ E((Fa - ¥0)*)
LGRS AUERICAR L

Using self-similarity, we obtain the formula

7,0 = 2ot i+ )P 200 gy
+ (k-1

for k>0 and »k) = y-k) for k<0. The correlations
are given by

A0 = [+ 20" +(6-]. )

for k>0 and ptk) = p(-k) for k<0.

The asymptotic behavior of ok follows from
Taylor expansion: Fifst note that

p(k) = %k“’g(k-‘)

where g(x) = (1+x)** -2+ (1-x)*

Journal of EAEA, Vol. 17, 2000
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If 0<H<1 and H=I1/2, then the first non-zero term
in the Taylor expansion of g(x), expanded at the

origin, is equal to 2H (2H —1)x*. Therefore, as
k tends to infinity, pfk) is equivalent to
HQH -DkM¥-?, ) ie.,
p(k)[HQ2H -Dk* 1> 1 ask >

For % < H <I, this means that the correlations
decay to zero so slowly that

S p(k) = 12)

k=—o

The process X (i =1,2,.) has long memory.
For H=1/2, all correlations at non-zero lags are
zero, i.e., the observations X, are uncorrelated.

For 0<H<1/2, the correlations are summable. In
fact a more specific equation holds, namely,

3, (k) =0 (13)

k= -

We conclude this section by nothing an appealing
property of stationary increments of self-similar
processes: The sample mean can be written as

X o=t e T R
i=1 .
ntnf (Y, - Y,

Therefore, instead of the asymptotic Eq. (7), we
obtain for each sample size the exact equality

var( A_')= o imtE P

For H=1/2, this is the classic result
var( )_() - o *n~'. Moreover, if . is a Gaussian
process with mean x and variance o, then
n'# (X = u)lo is a standard normal random

variable. This can be used to calculate tests and
confidence intervals for x

In the next section our attention will focused on a
model which can be used to model long-memory
processes.

Fractional ARIMA Models
ARIMA (Auto-Regressive Integrated Moving

Average) models were introduced by Box and
Jenking. Because of their simplicity and flexibility,
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it became very popular in applied time series
analysis. The theory of statistical inference for
these processes is well developed. Fractional
ARIMA models are a natural extension of the
classic ARIMA models.

Recal the definition. of ARMA and ARIMA

processes. To simplify notations,
u=E(X,)=0 is assumed. Let B be the
backshift operator defined by
BX ,=X,, B'X,=2X,,,.. In partcular

differences can be expressed in terms of the
backshift operator as X, - X, = (1-B)X, ...

Let p and g be integers. Defining the polynomials
p(x)=1-2 ¢,x’
i=1
and -

L2 )
p(x)=1+% ¢ x’
i=1

Assume that all solutions of
¢(x)=0and @(x)=0 are outside the umit
circle. Furthermore, let ¢, (¥ =1,2,...) be iid
normal variables with zero expectation and
variance O'E . An ARMA(p,q) model is defined to
be the stationary solution of

$(B)X, = ¢(B)e, (14)

If instead Eq. (14) holds for the drh difference
(1 - B)? x,, then X; is called an ARIMA(p,d,q)

process. The corresponding equation is
$(B)Y1-B) X, =p(B)e, (15)

Note that an ARMA(p,q) process is also an
ARIMA(p,0,q) process. If d is larger that or equal
to 1, then the original series X; is not stationary. To
obtain a stationary process, X; must be differenced
d times.

Equation (15) can be extended to non-integer
values of d in the following way:

Definition 4 Let X; be a stationary process such
that

$(B)1-B) X, =0p(B)e,

for some —Y.. < d < % Then X, is called a
Jfractional ARIMA(p,d,q) process.
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The range that is interesting in the context of long-
memory processes is ooy Yo The upper
< =

bound d<% is needed, because for d2/, the
process is not stationary, at least not in the usual
sense. In particular, the usual definition of the
spectral density of X, would lead to a non-
integrable function. For the range '2<d<I, one can
still define “spectral density,” by using a more
general definition. Also note that, the case d > Y2

can be reduced to the case -<d< %2 by taking
appropriate differences.

Eq. (11) can be interpreted in several ways. For
instance, it can be written as

(1 2 BY Y @ X ~ . (16)

Where X ; is an ARMA process defined by

X, =4 (B)p(B)e, (17)

This means that, afier passing X, through the
fractional difference operator (or finite linear filter)
(I-B)“r, we obtain a ARMA process. On the other
hand, we can write ;

X,=¢(B)'eB)X,, (18)

Where y - is a fractional ARIMA(0,d,0) process
defined by

Xo 7 (AnB)uss, 19

That is X, 1s obtained by passing a fractional
ARIMA(0,d,0) process through an ARMA filter.
The parameter d determines the long-term
behavior, whereas p, q, and the ' corresponding
parameters in ¢(B)and ¢(B) allow for more
flexible modeling of short-range properties.

The spectral density of a fractional ARIMA process
follows directly from Eq. (15). That is,

ol lpte)|
A)=—= _

L= Frory

the spectral density of the ARMA process Y ,.
Recall that if X, is obtained from a process Y, with
spectral density fy by applying the linear filter
2a(s)Y,, then the spectral density of X; is equal to
|[A)|fy (1), Where 42y =3 a(s)e** -

From (3.11) we then obtain the spectral density of
X

FA ==e* ™ fmuB) @)

Note that |1_eu|=25mi. Because
: 2

the behavior of the

lim ;o A (sin 52'-) =1

spectral density at the origin is given by

2 2
oy e Ze 2O - g o @Y

2

2z |¢(1)| :

Thus, for d > 0, the spectral density has a pole at
zero. Comparing this with our notation in the
previous sections we see that

Gkl 10 (22)
For d = 0, X, is an ordinary ARMA(p,q) process
with bounded spectral density. Long-range
dependence occurs for

0<d<i 23)

In order to transform X, into a process with a
bounded spectral density, on has to apply the linear

filter (1 - B)?. For -% < d < 0, f{0)=0 so that the

sum of all correlations is zero, and this case is of
less practical importance.

ESTIMATION OF LONG AND SHORT
MEMORY

The phenomenon of long memory was observed in
applications long before appropriate stochastic
models were known [6]. Several heuristic methods
to estimate the long-memory parameter H were
suggested. Best known is the R/S statistics, which
was first proposed by Hurst in a hydrological
context. Other methods include the log-log
correlogram, the log-log plot of var( X ,) versus
n, the semi-variogram, and least squares regression
in the spectral domain. These methods are mainly
useful as simple diagnostic tools. Short memory
processes are discussed and used extensively in
many statistical applications. The case where long
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as well as short memory dependence exists is not a
well developed parts of applied statistics.

The R/S Statistics

The -famous hydrologist Hurst noticed some long
memory characteristics when he was investigating
the question of how to regularize the flow of Nile
River. More specifically, his discovery can be
described as follows: Suppose we want to calculate
the capacity of a reservoir such that it is ideal for
the time span between f and t + k. To simplify
matters, assume that time is discrete and that there
are no storage losses (caused by evaporation,
leakage, etc.)[6]. By ideal capacity we mean that
we want to achieve the following: that the outflow
is uniform, that at time ¢ + k the reservoir is as full
as time /, and that the reservoir never overflows.
Let y denote the inflow at time 7 and

v, =y ' x, be the cumulative inflow up to

time j. Then the ideal capacity can be shown to be
equal to

R(t,k) = maX[KH- Yiuopdy,, pebliyp—

mm[}’t B r k( t+k -r)

O=i<k

R(tk) is called the adjusted range. In order to study
the properties that are independent of the scale,
R(t,k) 1s standardized by f

f+k
'lz(x ~X0 iy (23)

S(t, k) =

where o ,i* X . Note that S°tk) is
equal to (k-1)/k times the usual sample variance of
Xe+ty oy Xpax. The ratio

R _ R(1,k) 26)

SeromBed, R

is called the rescaled adjusted range or R/S-statistic.

~Hurst plotted the logarithm of R/S against several
values of k. He observed that, for large values of k,
log R/S was scattered around a straight line with
slope that exceeded 4. In probabilistic terminology
this means that for large £,

log E[R/S]~a+Hlogk, with H> 1. (27)
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This empirical finding was in contradiction to
results for Markov processes, mixing processes and
other stochastic processes that where .usually
considered at’'that time. For any stationary process
with short-range dependence, R/S should behave

1.
asymptotically like a constant times k2.
Therefore, for large values of k, log R/S should be
randomly scattered around a straight line with slope
% . Hurst’s finding that for the Nile River data, and
for many other hydrological, geophysical, and
climatological records, R/S behaves like a constant
times &7 for some H > % , is known under that
name Hurst effect.

Let Q =Q(t,k)= R(t,k)/S(t,k) be the R/S
statistic defined earlier. To estimate the long-
memory parameter, the logarithm of Q is plotted
against k. For each k, there are n-k replicates. The
R/S method can be summarized as follows [4]:

1. Calculate Q for all possible (or for a sufficient

number of different) values of 7 and k.
. Plot log O against log k.

3. Draw a straight line y =a+blogk that
corresponds to the “ultimate” behavior of the
data. The coefficients a and b can be estimated,
for instance, by Jeast squares or “by eye”. Set

AT A

H=5.

The following difficulties arise: How do we decide
from which k on the “ultimate behavior” starts?
How uncertain is the estimate of H? In particular,
for finite samples, the distribution of Q is neither
normal nor symmetric. This makes estimation by
eye more difficult. Also, it raises the question of
whether least squares regression is appropriate. The
exact distribution of O seems to be difficult to
derive and depends on the actual distribution of the
data generating process. The values of Q for
different time points ¢ and lags k are not
independent from each other. The exact description
of the dependence would be very complicated and
possibly model-dependent. Finally, for large lags k,
only very few values of O can be calculated.
Because of these problems, it seems difficult to
define a fully “automatic” R/S methodology, and to
derive results on statistical inference based on the
method.
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Variance Plot

As it was noticed in the previous section, one of the
striking properties of long-memory processes is
that the variance of the sample mean converges

slower to zero than n"'. From Theorem 3.1 we
have

var( X ) =~ cn?#7? (28)

?

where ¢>0. This suggests the following method for
estimating H:

1. Let k be an inteber. For different integers k in
the range 2<k<m/2, and a sufficient

number (say m, ) of sub-series of length k,
calculate the sample means

X, (k),.... X m, (k) and the overall mean

X (ky=mpS X (k) (29)
Fal!

2. For each k, calculate the sample variance of
the sample means y  (k)(j=1,. m,)"

s*(k) = (m, -!}"i (X (k)= X ; (k)

3. Plot logs®(k) against logk .

For large values of k, the points in this plot are
expected to be scattered around a straight line with
negative slope 2H — 2 . In the case of short-range
dependence or independence, the ultimate slope is
2(%) - 2 = -1. Thus, the slope is steeper (more
negative) for short-memory processes. The
problems in this method are in principle the same
as for the R/S plot.

Least squares regression in the spectral domain
Least squares regression in the spectral domain
exploits the simple form of the pole of the spectral
density at the origin:

=28

fA)=c 2| (A - 0) (30)
Equaﬁon (3.7) can be written as

log f(A)=log c, + (1-2H)log|A|- (31

Recall that, for fixed frequency A=0, the
periodogram I(A) is an asymptotically unbiased
estimate of f; i.e., we have

lim E[I(A)] = f(1)- (32)

Usually, /(4) is calculated the Fourier frequencies

G o R 1 gt (33)

k.n
n

where n is the integer part of (n-1)/2. For short-
memory processes, it is well know that for a finite

number of frequencies A,,...,4, € (0,7), the

corresponding ﬁeriodiogmm ordinates /(4;),... I(A4)
are approximately independent exponential random

variables with means f{4;), .., f{4¢). For long-
memory processes, this result can be stated as:

LY, I =, (W) S RG] G4

where {,...,{, are independent standard

exponential random variables. This together with
(4.8), leads to the approximate equation

log/(4,, ~logc, +(1-2H)log4, , +

(35)
log¢ k

where § . are independent standard exponential
random variables. Not that

Eg £,) = -C.= —0517215 ...
where C is the Euler constant. Define

Y, = log I(‘lk,n )
x, =log ,1,‘,",
By=logec,-C,p,=1-2H,

and the “error” term
2, =lag &+
Then (3.12) can be written as

Ve = Bo +Bix. +€, (36)
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This is a regression equation with independent
identically distributed errors e, with zero mean.
The coefficients f; and £; may be estimated, for
instance, by least squares regression. The estimate
of H is then set equal to

gpont o (37
2

Several problems arise with this approximate
method:

1. The notion of long memory is an asymptotic
one. Often the spectral density might be
proportion to- A" in a small neighborhood of
zero only. By wrongly assuming that this
proportionality is correct in the whole interval
[-7 n], the estimate of H can be highly biased.’

2. If f§,and §, are based on all Fourier

frequencies, then this does not matter
asymptotically. It might, however, have an
influence on the finite sample properties of

H ; or it matters if only a small number of the
smallest frequencies are used.

3. The distribution of e is highly skewed. A least
squares. estimator will therefore be inefficient
compared to an estimator that uses this

‘property.

Problem 1 can be solved, for example by
estimating the least squares line [7] from the
periodogram ordinates at low frequencies only.
Clearly, this can be done only at the cost of lower
precision. Also, because only small frequencies are
considered, problem 2 need to be taken more
seriously. The third problem cannot be solved
without abandoning the ordinary least squares
method. For parametric models, efficient maximum
likelihood- type methods can be obtained by
applying weighted least squares with appropriate
weights.

An estimation of /3, and /3, based on all Fourier

frequencies is of little practical importance, so we
do not. discuss it further here. The least squares
method becomes attractive when the focus is on
estimating the pole (ie., H and ¢ only by
considering a certain number of the smallest
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Fourier frequencies. The advantage of this method
is* that it is easier to derive the asymptotic
distribution. In contrast to maximum likelihood
estimation, almost no model assumption is
necessary.

Maximum Likelihood Estimator

In this section a maximum likelihood estimator
called Whittle estimator is discussed. A Fraction
Auto-Regressive Integrated Moving Average
(FARIMA) model to fit Ihe‘; periodiogram of the
collected data is used. The FARIMA model will
have the following parameters, (0,d.0).

Consider a series X; of length n, which obeys the
following rule:

#(B)1=B) (X,-u)=0(B)s, (39

where €, are Gaussian white noise with variance
o} . The roots of the polynomials ¢(z) and g(z) are
assumed to lie outside the unit circle. Then the

process X, is stationary for d < % and invertible for
d > -1. The spectrum

2

p(e’)

pe’)

is infinite at the origin for 4 >0 and zero for d < 0.
Long memory is associated with d > 0. If d < 0, the
process is said to have intermediate memory.

f(A) = ‘;—2 i-e”™ 69
b4

The Whittle likelihood, WL

Let the Whittle likelihood be defined as [8]
log L, (8,02) = (40)

-2 log f(4,10,00)-4+> ———L——
; 1 2§f(%|9,03)

Where Ly is the whittle version of the likelihood
function. And /(4;) denotes the periodogram at the

J-th Fourier frequency, 4 (4, = 2wt j=1,..m

n

2

W”‘):i_ @1)

& A
._jr

Z X e

=]
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m is the largest integer contained in (n-1)/2. It is
discrete time version of the Whittle function. In the
ARMA case it may be interpreted e.g. as the
likelihood  associated with the asymptotic
distribution of the periodogram. On the other hand,

if the term S log f(4, |.6,0:) is dropped the
j= _ _
asymptotic properties remain the same, and it

becomes the Yule-Walker estimator for AR(p)
process. The reduced form of Ly with respect to the

. 3,
€ITor vanance o - 15

m J(A,

> logg(A,)-m
J=1

g P63, (42)
it g7 gyl
oom o g(’l_,)
where f(A)=0lg(1)/2n

with g(4) = g(4]6)
This estimator is denoted by WL.

Minimizing the above equation amounts to
minimizing the sum of the ratios 1(4,)

; f{4,10.0 9,
with respect to . We follow the following to steps:

1. Minimize

o1 orl 2 Iigadpy
) = Pt S
280)5 diFarTTe e Y

with respect to &

21056t 7 & izQ(eﬂ))
n

Constructing a FARIMA model

The applicability of FARIMA models is dependent
on the ease with which they may be fitted to an
observed time series. Selection and estimation for
FARIMA model is more difficult than that of
standard ARMA models [3,4]. When both long-
and short-range correlation structures are present in
the data, their behavior is hard to distinguish.
Additionally, likelihood estimation techniques for
FARIMA model present computational problems
and often result in significant finite sample biases.
However, methods for constructing ARMA models
are now well established. FARIMA model is the
extended version of ARMA model in nature, so it

will be helpful to solve model-building problems of -
FARIMA by applying the effective’ methods for
ARMA processes. '

Transfer the FARIMA problem to the ARMA
problem by splitting FARIMA model into its
“fractional differenced” and “ARMA” part. For a
FARIMA process X,

¢(B)A'X, = ¢(B)e, 43)
" Then obtain
W‘, =&JXI (44)

where W, = [¢(B) /o (B) e,

So, if the differencing parameter d can be obtained
in advanced and the fractional differencing operator
A? can be implemented in practice, W, the
fractionally differenced X, can be evaluated as an
ARMA model.

The following is the procedure used to fit a
FARIMA model to the data.

Step 1. Estimating fractional differencin
parameter d '

Hurst parameter 4 can be estimated by several
methods such as Variance-time analysis, R/S
analysis and periodogram-based analysis. The
strength of long-range dependence measured by d
is the same as that by F upon H = d + 0.5 . Then
we can estimate parameter d from this relationship.

Step 2. Fractional differencing on X,

The calculation of W, from X, involves a finite
approximation to the infinite sum in the definition
of fractional differencing operator. The exact
fractional differencing operator for the X, series
with mean value zis

A‘*(Xr—p).—., (45)
= (d w
S (et st

where ;
__ ()'ra+d
T T+ HTA+d - j)
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This involves the unobserved quantities X X, ...
We have assumed causality here.

After using the operator A° with estimated
parameter 4 on .X;, we can obtain W,

Step 3. Model identification and parameter
estimation for the FARIMA model.

Now W, can be analyzed as an ARMA(p,q) model
using conventional method. We select ARMA(1,1).
Once the order p and g are selected, we can
estimate all the parameters of the desired FARIMA
model by Durbin recursion method([3].

SUMMARY AND CONCLUSION

In this research work, Ethernet traffic from ECA’s
External network, which is connected using a
shared media (hub), is analyzed. Graphical as well
as mathematical methods were used to show its
behavior. The results from each of the anaysis
methods are presented.

SUMMARY

In this section the results are summarized in detail
and the observation are represented graphically.

R/S analysis

The result obtained after analyzing the collected
data using the Rescaled Range analysis shows the
self-similar behavior of the Ethernet traffic. The
value of A (Hurst parameter) obtained was 0:8087.

logHog plot of RIS

1 2 3 4 L] 7 & Ll

lu:m
Figure 5 log-log plot of the R/S statistics

Figure 5 depicts the log-log plot of R/S. It shows an

asymptotic slope that is distinctly different from

0.5 and is easily estimating using least squares to
be 0.8087.
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Variance Plot

The result obtained using the Variance Plot method
proves that the data has long memory or it is long-

range dependence. The estimated Hurst parameter
equals 0.7811.

Variance tims plot

i z 3 s 5 s 7
Figure 6 Variance-time plot

The variance-time curve, given in Fig. 6, shows an
asymptotic slope that is clearly different from -1
and easily estimated to be —0.4378 (using least
squares), resulting in a practically identical
estimate of the Hurst parameter H of about 0.7811.

Least Squares Regression in the Spectral
Domain

An important practical problem that remains
unsolved with this method is how to choose the
lower limit (1) and the upper limit (m) for finite
samples. Depending on the choice 1 and m, results
can differ considerably. Increasing m reduces the
variance of H but increases the bias. On the other
hand, reducing m increases the variance but
reduces the bias. The estimated H for four
combinations of 1 and m is shown in the Table 1.

Table 1: Results from the Least squares regression

in the spectral domain

1 m H

1 360 0.8202
1 400 0.7851
10 360 0.7947
10 400 0.7504
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Penodogram plot

log(Periedogram)

dam

5 I3 ‘2.‘5 -I2 -1 .‘5 ; -0..5 él 0.5
log(Fequency)

Figure 7 Estimation of H by least squares

regression, based on the Fourier

frequencies 2 ,..., Al

Note that the value of H increases the more one
concentrates on low frequencies only. This might
be an indication for strong long-range dependence.

Looking at the periodogram plot, Fig. 7,
corresponding to the time series, it may be
observed that although there are some pronounced
peaks in the high frequency domain of the
periodogram, the low-frequency part is
characteristic for a power-low behavior of the
spectral density around zero. In fact, by fitting a
simple least-squares line using only the lowest 10%
of all frequencies, we obtain a slope estimate of -
0.64 which results in a Hurst parameter estimate of
about 0.8202.

Whittle Estimation

In this analysis a fractional ARIMA(0,d,0) model is
fitted to the collected Ethernet data. The estimate of
H was equal to 0.80. The plot of the periodogram
and the fitted spectral density, shown in Fig. 8,
show a good agreement between data and both
fitted models. The fractional ARIMA(0,d,0)
process has only long memory property. So it
might not have a good approximation for the short
memory part which is observed at large
frequencies.

Fejodograim and fitted spectral denstties

A

398358
B8

B

Feor iy ihamriidvin 2okl st asaik1oie
log(fecqaency)

Figure 8  Periodogram and fitted Fractional
! ARIMA (0.0.297.0) spectral densities.
Fitting FARIMA(p,d,q) Model.

The result for the fitted FARIMA(3,0.297.3) model
is plotted along with the periodogram in Fig. 9.

Periodogram and ftted Spectral Density

log frequency
Figure 9 Periodogram and fitted Fractional
ARIMA (3,0.297,3) spectral densities.

A fractional ARIMA(3,0.2973) process is a
process with 3 poles and 3 zeros and fractionally
differenced with a differencing parameter 0.297. It
may be observed that the model has fitted both the
long-and short-ranges with the periodogram
appropriately. So we can say that FARIMA process
is capable of simultancous modeling long-range
and short-range behavior of network traffic.
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CONCLUSION
The main findings are;

o Ethernet LAN traffic is statistically self-
similar. This can easily be seen from the first
two graphs in section 2. This is the property
that the rescaled sequence looks similar in the
distribution sense with the original series. It
can also be stated as Ethernet LAN traffic is
long-range dependent or has long memory.

e The degree of self-similarity measured in
terms of the Hurst parameter H is typically a
function of the overall utilization of the
Ethernet and can be used for measuring the
“‘burstiness” of the traffic. As the utilization
increases the Hurst parameter will tend to be
close to 1. The data investigated in this work
has a Hurst parameter of around 0.8.

e  Traffic characteristics using a FARIMA model
has been investigated. This model has the
capability of capturing the long as well as short
memory properti¢s of the traffic pattern. And
as it is shown the spectral density of the
FARIMA model considered in this work fits
nicely with the periodogram calculated from
the data. Periodogram fitting is used because
the long as well as the short memory properties
can be easily shown from this function. The
autocorrelation function could also be used.

An mmportant implication of the self-similarity of
LAN traffic is that aggregating streams of such
traffic typically does not produce a smooth
superposition process but instead, intensifies the
“burstiness” of the aggregation process.

Finding a model that can capture both the short and
long memory properties of the Ethernet traffic was
one of the tasks in this paper. It is shown that the
FARIMA model is in good agreement with
peiodogram calculated from the collected data. So
we can use a FARIMA model, for example, in
traffic prediction problems.
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