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ABSTRACT

The four-bar mechanism is a class of mechanical
linkage in which four links are pinned together to .
form a closed loop in order to perform some useful
motion. This has long been, and continues to be, an
effective tool for mechanical design engineers. This
paper considers synthesis, analysis and simulation
of the four-bar linkage analytically for three and
four precision positions of the motion generation
problem. Kinematic synthesis of the four-bar
mechanism using the complex number method is
presented. The results of the synthesis process are
analyzed to determine ftlotion characteristics of the
mechanism. These motion characteristics are then

used for simulation of the mechanism. Matlab
programs are written for solving the equations
developed in the synthesis and analysis problems.
Matlab 'is also used to develop user-friendly
Graphic User Interface windows for data input and
output as well asfor simulation.

INTRODUCTION

Mechanism synthesis is the process of generating
the geometry of a mechanism that will perform a
specific task. Inhere, geometry generation means
determining the lengths of the individual links that
make up the mechanism for performing a desired
task. In this paper the focus will be on the planar'
four bar mechanism as shown in Fig. I.

There are three broad categories that are considered
in the synthesis process. These are outlined below.

Function Generation defines the relationship
between the position of the output link and the
position of the input link. The motion that the
coupler link goes through is not of concern.
Example~ of function generation include the
automobile accelerator, the control stick in an
aircraft, and the piston in an engine mechanism.

Path Generation defines locations through which a
tracer point, or a point of interest, on the coupler
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will pass. The orientation of the coupler link is not
important, but the times at which the tracer point
passes the prescribed locations may be important.
In this case the synthesis problem is path
generation with prescribed timing. The film
advancing mechanism in a movie camera is an
application of path generation.

Motion Generation (Rigid-body Guidance) defines
locations through which the tracer point passes and
the corresponding orientation of the coupler link at
those rocations. Examples of motion generation
include the power lift, gate on a truck, the lift
mechanism on a dumpster truck, and the
windshield wipers on an automobile.

For all three synthesis types the prescribed
conditions. that the mechanism must satisfy are
called the precision positions. For function
generation the precision positions consist of the
pairs of input and output angles, Pi and Yi

respectively, that the mechanism must meet. For
path generation the precision positions are the pairs
of coordinates (Xi, Yi) which the tracer point must
pass through. In addition, for prescribed timing the
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angle of the input (OJ will also be specified. In the
case of motion generation the precision positions
are the coordinates the tracer point passes through
(x&Yj ), as well as the orientation' of the coupler
defined by angle OJ. This paper deals with Motion
Generation problem of kinematic synthesis of a
four-bar mechanism. The synthesized mechanism
is then analyzed .for determining its motion
characteristics. These results are then used for the
animation of the mechanism.

Conventional mechanism design procedures using
card board models, prototypes of the mechanism,
making trial and error calculations, and a

combination of the above, have recently been
getting replaced with the use of computer software.

Software packages can assist' the designer in
performing repetitive and programmable
calculations fast and thus help in minimizing the
errors that can be induced by human fatigue .

Various means of designing or synthesizing a
mechanism to produce' desired motion in a four-bar,
mechanism have been developed. Sandor and

Erdman (1984) describe a method of solving the
problem~ using graphical constructions. They also

provide analytical equations to solve the same
problem computationally. Nikravesh 1988; Haug
1989; Shabana 1994, proposed methods bast<d on
the well-established absolute coordinate method for

kinematic analysis [3 },

Indeed, there are a number of tools like KYNSYN,

Watt, LINCAG~S [I] available, which are
commercially very expensive, that can be lised iIi
the analysis and synthesis of planar mechanisms.

Howeve'r, in this work, Matlab programming
language has been used as the graphic interface,
which is more user friendly and has also built in
routines that ease the programming difficulties.

Synthesis of the four-bar mechanism

In dimensional synthesis, • the component
dimensions that comprise a chosen mechanisma~e
specified to allow the mechanism' to perform a

given task [5].

Motion of the coupler can only be approximated by.
several discrete precision points. That is, the
resulting linkage can create the motion desired

precisely at these positions and approximately at
other positions. The more precision points are used,
the closer is the actual motion of the coupler to the

JournalofEAEA, Vol. 18, 2001

ideal desired motion. But the problem becomes
more difficult to solve as the number of precision
positions is increased. Fortunately, many real world
problems only need several critical positions to be
satisfied precisely. Tolerance is usually allowed at
positions other than the precision points [6]. A four
bar linkage can satisfy up to five prescribed
positions for the standard-form solutions of motion

generation problem [5].

The analytic synthe~is procedure ill algebraic and is

less intuitive; hence, quite. suitable _ for
computerization. In order to obtain a handle on the

design variables and free choices, an analytical
model of the linkage must be developed: Several
mathematical teqhniques for modeling linkages
have been utilized for planar synthesis objectives.
These include algebraic methods, matrix methods,
and complex numbers. For planar linkages, the

. complex numbers technique is the simplest, yet the
most versatile method [5]. This technique uses

. vectors to designate each of the links in the
. mechanism. Fig. 2 shows the schematic

representation of the four-bar mechanism shown in
Fig. I by replacing the links by vectors [4].

FigUre') Schematis representation of the four-bar
mech<i'1ism

Loop Equations

The equations and process for synthesizing the
four-bar mechanism are developed by introducing
dyads. The mechanism can be oroken in to two

dyads, WI and ZI which make up the input dyad,
and UI and SI which make up the output dyad.
Specifying these two dyads is enough to determine'

the entire mechanism because .the remaining
vectors VI and GI can be derived from: .

VI=Zl~SJ
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Equations (4) are commonly referred to as the
standard form loop equations, and each of them
contains two scalar equations. Resolving the
vectors into real and imaginary parts, we have the
real parts as: '

WCOSB(COSfJ2 -1) - wsinBsinfJ2 +

, z cos¢(cosa2 -1) - z sin¢ sina2 = Pl2 cosc52

,(5)

wco~cosA -l)-wsinBsinA +

zcos¢(co923 -1) - zsin¢sinll:J= P13 cosO)

(1)

The angles between VI and Z], ZI and S], VI and SI
are fixed, as these vectors make up the rigid
coupler link.known as a terinary link. Fig. 3 shows
the linkage in three successive positions.

The equations that are used to generate solutions
for the input and output dyads are called loop
equations. The first loop begins at the ground pivot
and proceeds out alorrg the second position dyad
vectors, .Wz and Zz. along the displacement vector
from the first precision point, PI. to the second
precision point, P2, and then back along the first
position dyad vectors, ZI and WI, tl'J the ground
pivot.

W / (e iP, - i )+ Z / (e ia, - 1)= P /1

W,(eiP;_l)+Z,(eia, -1)= PlJ

(4)

Figure 3

For the input and output dyads, the loop equations
become:

. W1 + Z 1 - P/1 - Z / - W/ = 0

and the imaginary ones as:

wsi~co~ -l)-wcos9sin~ +zsin¢(co~ -1)­
zcogpsi~ = P12 sinc52

(6)
wsin e(cos fJ3 -1)- wcos e sin fJ3 + isin ¢(cos a3 -1)-

z cos ¢ sin a3 = P13 sin 03

In these equations there are twelve variables.
Namely, w, 0, P;b PJ, z, 1jJ, a;b aJ,PI], PJ3. 02 and
OJ. Six of these (a;b aJ, PI]. PJ3, 02 and oJ) are input
variables and since we have onry four equations we
can s91ve for only four of the remaining six
unknowns. The other two unknowns are taken as

free choices [5]. Taking Doand Doas the 'free
choices, as it is commonly done, the transcendental
non-linear equations are linearized.

"

Equation (4) can be written in matrix form as:

Equation (7) is solved for WI and ZI, using the
Cramer's rule. Taking P2 and PJ as free choices,

(2)
W J + Z J - PlJ - Z / - W / = 0

Moving the displacement vector to the right hand
side and,using the relationship between the second
position and first position vectors

ea, - 1Jl{W /} {P/1 }ea, - j Z / = PlJ

(7)

(3)

W / e iP, + Z / e ia, - Z / - W / = P lJ

And these equations can be simplified to:

IP /1ea, -l
W, = PlJ

ea, - 1(8)

Ie P, - 1

e a, '--; 11e p, - 1

ea) - 1
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Similarly, from the right hand dyad, UI and SI are
obtained from:

In this case, the resulting six scalar equations have
seven unknowns and can not be ·solved unless one
of the unknowns is taken as a free choice. Although
one of the unknowns is made a free choice, the
system of equations, unlike to that for three
positions, is still non-linear. Rearranging the
equations yields,

z,

[e r, - Ie'l - I

lefJ'-1 Po IeP' -I PIJ

!efJ'-1 ea'_I!eP'-1 eaJ_I

ea, - I]{U I} {Po}ea, - I S I = PIJ

(9)

(10)

[el/l' - I
eifJJ - 1

eiP• - I
(14)

From Eq. (15) it can be noted that, because of the ­
1 term, the vector can never be equal to zero.
Therefore, .the matrix must be singular or non­
invertible. Hence, the determinant of that matrix
equals zero. i.e.,

Equatio~ 00) can be solved for U/ and S], taking
Y2 and YJ as free choices.

IPo ea, - II

u, = 1':'''-1 '::,- ~ 11

(11 )

er'-I eaJ_I

and

lerl - I

Po Ie r, - I

PIJ (12)
S) =

let' - I
ea, - IIe'l - I

eaJ - I

Wb Zb' U/ and S/ are complex numbers
representing the links of the four bar linkage. The
remaining vectors V/ and G/ are obtained from ijq.
(1) .

The lengths of the links are expressed by the
magnitudes of the corresponding vectors.
Designating the lengths of the ground link by "1,
the input crank link by r], the coupler link by rJ and
output link by r4, we have,

eiP, -] eia, -]PJ]

eifJJ -]

eiaJ -]PlJ 1= 0

eifJ, -]

eia, -]Pu

Expanding the determinant yields

aeifJ, +beifJl +ceifJ, -(a+b+c)=O

. where.

a = (eia, -1)Pu - (eia• -1)PIJ

b = (eia• -1)PI2 - (eia, - I)PI4

c = (eia, -1)P13 - (eia) -l)Pl1

(15 )

(16)

(17)

Taking one of the three unknowns in Eq. (17) as
the free choice, it is possible to solve for the other
two unknowns using the Symbolic Math Toolbox
of Matlab. If we make /32 the free ch,oice we can
solve for /33 and /34. Now, the problem is reduced to
the linear system of equations given by Eq. (18)
which can be solved for the remaining unknowns
WI and ZI using Cramer's rule.

Synthesis of Four-bar mechanisms for Four
positions

In _a manner similar to the synthesis of four-bar
mechanisms for three positions, the following
equations can be developed considering four
positions for the left hand dyad.

JournalofEAEA, Vol. 18,2001
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Analysis of the four-bar mechanism

To carry out the analysis of the four-bar
mechanism, the equations that define the relative
movement of the links are derived using the
physical dimensions obtained from the synthesis.
The configuration of the linkage depends on a free
parameter, which is typically the rotation angle of
one link, known as the driving link.

In this paper we are concerned with' those
mechanisms that generate closed coupler curves for
a complete crank rotation. Such mechanisms are
called GrashofMechanisms.

The GrashoFs Criterion

Grashofs criterion states that the sum of the
shortest and longest links of a planar four-bar
linkage 'can not be greater than the sum of the
remaining two links, if there is to be continuous
relative rotation between two lin~ [5].

If this rule is satisfied, in other words, if

l+s<p+q,
where I and s are the longest and shortest links of
the four-bar mechanism, we may have a crank­
rocker, a double-crank, or a double-rocker
depending on the position and configuration of the
links.

Position Analysis

coordinates. To solve the system of nonlinear
equations given by Eq. (19), it is customary to
resort to the well-known Newton-Raphson method
which has quadratic convergence in the
neighborhood of the solution.

The Newton-Raphson method is based' on
linearizing the system of Eqs. (19) in which the
system of equations is replaced by the first tWo..
terms of its Taylor series expansion around a
certain approximation lO) of "the desired solution.
Once the substitution has been made, the system
becomes

where matrix l/J q is the Jacobian matrix for the

constraint equations.l/J q is the matrix of partial

derivatives of the constraint equations with respect
to the dependent coordinates where m is the
number of constraint equations and n is the number
of dependent coordinates.

Equation (20) represents a system of linear
equations constituting an approximation to the non­
linear system of Eq. (19). The vector q(l), obtained
from the solution of Eq. (20), will be an
approximation of the solution of Eq. (19). Going
through this process repeatedly, the following
recursive formula is developed.

The position problem is always based on solving
the constraint equations, which make up the
following set of non-linear equations:

The position problem basically consists of
determining the position of all the links in the
system given the positions of the fixed and the
input links which can. also be called guided or
driving elements. Mathematically, the initial
position problem reduces to determining the vector
of dependent .coordinates from the known
coordinates corresponding to the input elements
that satisfy the nonlinear system of constraint
equations.

<I>(q) = 0 (19)

Equation (20) is solved iteratively un\il the error,
i.e.' the difference between the results of two
successive iterations, is smaller than the' pre­
specified tolerance.

It should be noted that the Newton-Raphso.n
iteration will not always converge to the desired
solution. If the initial approximation is not close
enough to the desired solution, the algorithm may
diverge, or may converge to an undesired solution.
There is still another source of difficulties. If the
values of the input variables do not correspond to.a
possible physical, solutio.n, the mathematical
algorithm will fail irrespective of how the initial
approximation has been chosen.

where q is the vector of the system dependent
coordinates. It is assumed that there are at least as
many equations as there are unknown variables or

JournalofEAEA, Vol. 18,2001
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Velocity Analysis Solutions to the position, velocity and
acceleration Problems

The equations that permit to solve the velocity
problem originate from differentiating the

. constraint equations including the driving
constraint. equations with respect to time.

Differentiating Eq. (19) with ~espect to time gives:

(22) .

Where . ~ is the Jacobian matrix defined in Eq.
q -.'

(20) and vector q is the vector of dependent

velocities (derivative6 with respect .time of the
vector of dependent position variables). Vector b is
partial derivative of the constraint .equations with
respect to time.

Solution to the position problem:

Figure 4

The vector loop equation for a four bar linkage as
shown in Fig. 4 can be written as:

Acceleration Analysis

The solution of the acceleration problem is
obtained by differentiating Eq. (22) with respect to

. time. In doing so, we have:

If there are no time dependent cOllstraints, this
vector will be zero. Once the position of the
mechanism is known, Eq. (22) .al!ows us to
determine the velocities by starting from the
velocities of the .input elements. The difference
between the position and velocity problems is that
the position problem is non-linear where as the
equations governing the velocity problem are
linear. Consequently, there is only one solution to a
properly posed velocity problem.

(24)

(25)=0

r/J(q) = 0

Equation (24) can be written as,

The position problem can be stated as: Given the
value of Oz, find those values of OJ and 04 for
which the above equations are satisfied. S,inceboth
of the equations are non-linear and transcendental,
Newton-Raphson iterative method is used to solve
the method iteratJvely.

Let the positi9n problem-be expressed as:

Newton-Rapl}son Algorithm

(23) .lPq(q,t)ij = c

where q is the dependent acceleration vector. where q is the vector unknowns to be found.

If the position vec~or q and the velocity vector q
are known, one can find the dependent acceleration

vector ij by solving the system ofli~ear Eq. (23).

a) Estimate the solution q(O)

b) Take a small correction factor which is the
difference between the values estimated and
the solution.
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c) Using the Taylor series expansion,

~ (oj }+ [ ~: ] ~ q (01 }= 0

~q(J)}= k') _q(O)}

Which can be solved for the correction factors

{Aq },

{L1q (1)}= -[ ~: rl {4l (OJ}

Resolving Eq. (27) into real and imaginary parts

and solving it for the unknowns 03 and 04 we get

Acceleration Analysis

Differentiating Eq. (24) twice with respect to time
yields

Forming a recursive formula:

(16)
(29)

d) Set a condition for convergence E > 0

e) Find Norm. = tP(q(j))

If Norm. < E, then,

q = qUI

Stop.
Else,

{Aq (/+1) }= _[ ~: rJ {4> (11 }

q(i) ~ qlj) + Aq(j+/)

and go to (e)

Many mechanisms have multiple solutions for the
pos~tion problem. The solution that will be
provided by the Newton-Raphson scheme is, in
general, dependent on the initial guess.

Velocity problem

Differentiating Eq. (24) with respect to time gives

Resolving Eq. (29) into real and imaginary parts,

and solving for 83and 84 yields

{~3}= [- r3sinB3 r4sinB4]-JB4 r3cosB3 - r4.cosB4

{ rij2 ..sinB2 +ri}i.~0~B2 +rlj;.~0~B3 -rij~2c~SB4}- r2B2cosB2 + r2B2 smB2 + r3B3 smB3 - r4B4smB4

(30)

Numerical Example

A numerical example is worked for the three­
position motion generation problem to demonstrate
the synthesis, analysis and simulation presented in
the paper: Synthesis results obtained from the
developed compu.ter program are compared with
results obtained from graphical synthesis method.

Graphical Method of Synthesis

1. The angular orientation and precIsIon
positions Of the coupler link in three
positions are drawn. In this case the
precision points through which the end
effector (the point of interest) must pass
are
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The angles of deviation of the Coupler
link, link AB in the second and third

positions from the' first position are

a2=22° and aj=68°.

Choosing points A. and B means taking the
four free choices (x and y coordinates of .
both points) that are allowed.

2. Draw construction line~ from point A to A '
and from point A • to A ".

Figure 6

3.. Bisect AA' and A 'A" and extend the

perpendicular bisectors until they
intersect. The point of intersection gives
one of the pivot points O2.

4. Repeat steps -2 and 3 for BB' l;I11dB 'B ".
This results in the other pivot point 04,

Figure 7

5. Connect O2 with A and 04 with B and they
give links 2 and 4 respectively. O2 and 04

form the ground link-link 1.

Figure 8

From measurement, link 2 and link 4, given by 02A
and O~, respectively are found to be

w= 5~7550 + 0.4809i

S = 18.3746 - 0.6611i

The ground link, 0204 is,

G= 3.4118 - 8.2796i

The other links are automatically known from the
·free choices.

v= 16.0313 - 9.4215i
Z= 14.6106 - 3.4698i
U = -1.4207.+ 5.9518i
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The angles P2. P3. Y2 and Y3 are measured to be,

Analytical Synthesis

The analytical synthesis is carried out by using a
computer program developed to solve the synthesis
problem. Input data used are, .

PJ=(O,O), P2=(-o, 11) andP3=(-17, 13)
a2 = 22° a3= 68°'

The free choices that ,are taken are

found from the graphical method of solution so that
it may be· possible to compare results from both
methods. Table 1 below gives comparison of the
results obtained from the analytical method with
those obtained by graphical method.

Table 1: C

As can be noted from the table, using the values of
the free-choices obtained from the graphical
synthesis, the computer program yields the same
lengths as obtained from the graphical synthesis.

A

B

Figure 9 Synthesized four-bar mechanism

f
Graphical Computer program

Vector
MagnitudeVectorMagnitude

G
3.4118 - 8.2796i8.95503.4118 - 8.2796i8.9550

W
5.7550 + 0.4809i5.77515.7550 + 0.4809i5.7751

'V
16.0313 - 9.4215i18.594816.0313 - 9.4215i18.5948

S
18.3746 - 0.6611i18.386418.3746 - 0.661li18.3864

Z
14.6106 - 3.4698i15.016914.6106 - 3.4698i15.0169

U
-1.4207 + 5.9518i• 6.1190-1.4207 + 5,9518i6.1190

Motion characteristics of the mechanism

Using the results of the synthesis, the mechanism is
analyzed for the motion characteristics. Plots of the
simulations showing velocity and acceleration of
the point of interest for 90 s simulation time,for
::onstant velocity of the input link 00 = 0.2 radls
are shown in Fig. 10.

User friendly windows for synthesis, analysi6 and
simulation

Fig. l1(a) enables selecting the number oflinks of
the mechanism, four in our case, and the number of
precision points. The inputs to the synthesis of the
four-bar mechanism are introduced

as shown in Fig.ll (b). The results obtained are
then analyzed as shown in Fig. 11(c). The plots
shown in Fig. 10 (a) to Fig. 10 (f) above are obtained
from fig.11(c) ...
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Figure 10 Motion.characteristics of the four-bar mechanism
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(a) Starting window (b) Input window

(c) Window for Output, Analysis and Animation

Figure II .user-friendly windows
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CONCLUSION

A method for kinematic synthesis and analysis of
four-bar mechanisms for the motion-generation
problem of three and four precision points is
presented in this paper. The dimensional synthesis
is based on the complex number method approach

.while analysis of the motion characteristics is
carried out by solution of a set of vector loop
equations derived from the synthesized mechanism.

. Newton-Raphson iteration algorithm has been used
to solve tlie non-linear system of equations.

A Matlab computer program is written to
implement the solutions to problems described in
this paper. A numerical example is worked out to
compare 'the validity of the solutions resultingfrom
the program against results generated from the
graphical method. The' computer program consists
of Graphic User Interface, which helps the user
with data input, output as well as viewing the
simulation.

The results obtained from the computer program
match exactly the results obtained from the
traditional graphical method. Hence, the user­
friendly program developed in this work can be
used for design, analysis and animatiori of various
four-bar mechanisms for three or four accuracy
points. It can also be helpful for pedagogical
purposes. It is also envisaged that this work can
also be useful as a benchmark for further research
in this area.
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