African Journal of Biotechnology

The AJOL site is currently undergoing a major upgrade, and there will temporarily be some restrictions to the available functionality.
-- Users will not be able to register or log in during this period.
-- Full text (PDF) downloads of Open Access journal articles will be available as always.
-- Full text (PDF) downloads of subscription based journal articles will NOT be available
We apologise for any inconvenience caused. Please check back soon, as we will revert to usual policy as soon as possible.

Biodegradation of orange G by a novel isolated bacterial strain Bacillus megaterium ITBHU01 using response surface methodology

A Tripathi, SK Srivastava


This research article deals with biodegradation of azo dyes by a newly isolated bacterial strain from soil. Azo dyes are recalcitrant to the conventional modes of treatment due to their complex structure. This article reports decolorization of azo dye by, Gram positive, endospore forming and azo reducing, Bacillus megaterium ITBHU01. Response surface methodology was used to optimize the important physical parameters screened by Placket–Burman design. Five physical parameters such as pH, temperature (°C), dye concentration (mg/L), inoculum size% (v/v) and time (h) were tested by using Placket–Burman design criterion and all five parameters showed significant effect (P < 0.05) on decolorization of orange G using B. megaterium ITBHU01. The values of parameters was optimized by applying central composite design (CCD) and the most suitable values for orange G decolorization by B. megaterium ITBHU01, as predicted by the statistical tool, was pH 6.9; temperature 37.0 °C; dye concentration 517 mg/L, inoculum size , v/v, (%) 5.5 % and time 23.7 h. At these optimum levels of parameters, bacterial decolorization of orange G by 94.48% was obtained under static conditions. Biodegradation and decolorization of azo dye, orange G, was confirmed using UV-VIS spectrophotometry, thin layer chromatography (TLC) and fourier transform infrared spectroscopy (FTIR) and electron spray ionization mass spectrometry (ESI-MS) analysis.

Key words: Azo dye, Bacillus megaterium ITBHU01, biodegradation, orange G, response surface methodology.

AJOL African Journals Online