African Journal of Biotechnology

The AJOL site is currently undergoing a major upgrade, and there will temporarily be some restrictions to the available functionality.
-- Users will not be able to register or log in during this period.
-- Full text (PDF) downloads of Open Access journal articles will be available as always.
-- Full text (PDF) downloads of subscription based journal articles will NOT be available
We apologise for any inconvenience caused. Please check back soon, as we will revert to usual policy as soon as possible.

Tulathromycin disturbs blood oxidative and coagulation status

A Er, E Ulutas, F Altan, G Cetin, A Bulbul, M Elmas, E Yazar


The aim of this study was to determine the effect of tulathromycin on serum oxidative status and coagulation factors in rabbits. Tulathromycin was administered to eight rabbits, and blood samples were obtained 0, 1, 5, 10 and 15 days after treatment. Indicators of serum oxidative status (malondialdehyde, nitric oxide, superoxide dismutase, retinol and -carotene) and coagulation values (antithrombin III, fibrinogen) were measured after tulathromycin treatment. In addition, routine serum biochemical values (creatine kinase-MB, lactate dehydrogenase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase, creatinine, blood urea nitrogen, cholesterol, triglyceride, high density lipoprotein, amylase, total protein, albumin, glucose and calcium), haemacell counts (white and red blood cells) and arterial blood gas parameters (packed cell volume, hemoglobin, pH, partial pressure of carbon dioxide, partial pressure of oxygen, actual bicarbonate, standard bicarbonate, total carbon dioxide, base excess in vivo, base excess in vitro, oxygen saturation, sodium and potassium) were also determined. Tulathromycin increased (P < 0.05) the levels of malondialdehyde, nitric oxide and superoxide dismutase activity, and decreased (P < 0.05) the level of antithrombin III. In conclusion, tulathromycin may cause oxidative damage and coagulation disorders during the treatment period.

Key words: Tulathromycin, oxidative damage, coagulation disorder.
AJOL African Journals Online