Main Article Content

Investigation of the Performance and Emission Characteristics of Biodiesel-Diesel Blends in Direct Injection Diesel Engines

Hadish Teklehaimanot Gebru
Neeraj Gupta
Ramesh Babu Nallamothu


The emission and performance attributes of a mono-cylinder direct injection variable compression test engine were explored using Jatropha curcas as a feedstock for biodiesel production. Two-step techniques, esterification and transesterification, were employed to create biodiesel with diesel fuel-like properties. In the first phase of esterification process, the molar ratio of methanol to the parent oil Jatropha curcas was 1:6, and 1% volume of sulfuric acid was added. The mixture temperature was maintained at 65 degrees Celsius, and the magnetic stirrer on the hotplate was adjusted to 600 rpm. At this point, the acid value decreased from 4.6mg-KOH/g-oil to 1mg-KOH/g-oil. During the second transesterification procedure, the catalysts were sodium hydroxide pellets and analytical-grade methanol at the same stirring speed and mixture temperature for 25 minutes. The emission as well as performance characteristics of biodiesel-diesel blends containing various mixing ratios were studied. The test samples B20, and B100 produced less carbon monoxide and hydrocarbon as compared to the baseline diesel fuel, and the power, and torque outputs of B20 were superior to all blends. The unexpected conclusion of the study was that increasing the blend's biodiesel component increases braking power and torque while decreasing brake-specific fuel consumption.

Journal Identifiers

eISSN: 2663-3205
print ISSN: 1998-0531