Main Article Content

2-D Electrical Resistivity Imaging Survey for Lithological Assessment at Igwete Primary School, Amai, South-South Nigeria


V.C. Enebeli
C.N. Okorafor
R.E. Kolagbodi

Abstract

Electrical Resistivity Imaging (ERI) is a useful near-surface imaging technique, which mainly include data acquisition, numerical modelling and tomographic inversion. Within the study area, only one – dimensional (1-D) Electrical Resistivity survey has been carried out for Geophysical investigations. Therefore, 2-D ERI survey was carried out at the Igwete Primary School, Amai to provide electrical picture of the subsurface from which discrete bodies and lithology are better revealed vertically and in lateral extent. The 2-D ERT survey data were acquired using the Petrozenith Earth Resistivity meter while employing the Wenner electrode array. The 2-D apparent resistivity data were inverted to obtain true resistivities of the subsurface using res2dinv software running on personal computer. The subsurface resistivity models were displayed as pseudo sections and inverted resistivity section in the form of colour shaded contour maps. The inverse resistivity model images indicate that at a lateral extent in the range (15.00-21.00) m and (33.00-39.00) m, anomalies suspected to be gravel mixed with sand is in place with resistivities of about (254.00-948.00) Ωm. From the geologic section we can infer that a geological formation is observed at a lateral position of (27.00-32.00) m of resistivity in the range (90.00-93.00) Ωm. This structure is inferred to be a clay pocket. The sandy nature of the formation requires that underground water development be sought for at (9.00-15.00) m over a depth (2.30-8.00) m in the sandy environment. Results of 2D resistivity imaging has helped to delineate the lithology which comprise mainly of; sand, sandy clay, clayey sand depositional environment. The resistivity of these lithology falls in the range (90.00-93.00) Ωm with depth to formation of about (2.30-6.00) m.


Journal Identifiers


eISSN: 2659-1499
print ISSN: 2659-1502