Molecular identification of virulence and antibiotic-resistant gene in Escherichia coli O157 and non-O157 recovered from water samples
Abstract
Background: This research work focused on ascertaining the presence of virulence and antibiotic-resistant genes in Escherichia coli (E. coli) O157 and non-O157 recovered from drinking water sources. Methods: Identification of E. coli O157 and non-O157 was carried out using standard serological and PCR techniques. Virulence genes (rfb O157, fliC H7, stx1, stx2, eae and hly genes) and antibiotic-resistant gene (BlaTEM) were detected using PCR method on selected isolates (n= 15) from different water sources which demonstrated multiple antibiotic-resistance in a previous study. Results: The serological identification result revealed that a total of 68 out of 382 E. coli isolates, recovered in a previous work, were identified as a presumptive E. coli O157. These included 19.1 %, 21.7 %, 33.3 %, 14.3 % and 9.1 % of E. coli isolates from wells, boreholes, sachets, streams and pipe-borne respectively. Statistical analysis revealed that there was no significant difference in the frequency of E. coli O157 from the different water sources (p > 0.05). Also, there was a statistically significant positive correlation between the E. coli isolates and E. coli O157 (Pearson’s r = 0.996). Detection of virulence and antibiotic-resistant genes showed that only 46.7 %, 33.3 %, 33.3 %, 93.3 %, and 66.7 % carried rfb O157, fliC H7, stx1, stx2 and rpoS gene respectively. In contrast, all the isolates possessed hly and BlaTEM genes but none had eae gene. Conclusion: The presence of one or combination of these genes in these isolates depicts their virulence and resistance nature.
Authors have copyright but license exclusive rights in their article to the publisher (Zagazig University).