Water SA

Log in or Register to get access to full text downloads.

Remember me or Register

The effect of anaerobic baffled reactor effluent on nitrogen and phosphorus leaching from four soils in a laboratory column experiment

Goitom Adhanom, Jeffrey Hughes, Alfred Odindo


Leaching of nitrogen and phosphorus from soil columns during application of anaerobic baffled reactor effluent was evaluated. The soils used were from Inanda (Ia), Cartref (Cf), and Sepane (Se) forms, and a silica sand (SS). Each was packed into duplicate columns (103 mm internal diameter; 200 mm length), four each for up-flow and down-flow leaching. Effluent was delivered continuously for 6, 8 and 35 days at high (32 mm·h-1), medium (16 mm·h-1), and low (2 mm·h-1) rates, respectively. At each flow rate, 9 pore volumes were collected. Leachates were analysed for pH, electrical conductivity (EC), nitrate and phosphate. Leachate pH from all soils was lower than the original effluent (6.4). Leachate EC varied between 0.5 and 0.9 dS·m-1 compared to the effluent EC of 0.84 dS· m-1. At high flow rate, the amount of nitrogen leached was similar from all soils. At low and medium rates, more nitrogen was leached from the coarser-textured SS and Cf than the finer-textured Ia and Se, at both flow directions. Flow direction had a greater effect on nitrogen leaching from finer- than coarser-textured soils. Phosphorus concentrations were higher than the original effluent at medium and high flow rates indicating that the soils were a source of phosphorus. At low flow rate, phosphorus concentrations were much lower than the original effluent, indicating soil retention. Phosphorus leaching was greater from coarser- than finer-textured soils in the up-flow columns, but the opposite occurred in the down-flow columns.

Keywords: anaerobic baffled reactor (ABR) effluent, soil types, effluent application rates, flow direction, leaching, soil column
AJOL African Journals Online