Main Article Content

Raw cow’s milk relatively inhibits quorum sensing activity of <i>Cromobacterium</i> violaceum in comparison to raw she-camel’s milk


SK Abolghait
AM Garbaj
AA Moawad

Abstract

Milk from different animal species has variable levels of antimicrobial factors against some of spoilage bacteria. For example, they are significantly present in higher concentration in she-camel’s milk than in cattle or buffalo and they are more heat-resistant than their counterparts in cattle and buffalo. Spoilage bacteria are known to communicate with each other by release of signaling molecules, a phenomenon described as quorum sensing (QS). Some food matrices inhibit these signaling compounds. In this study we screened QS inhibitory activities in raw milk of cattle and camel. Ten samples each of fresh raw cow’s milk and she-camel’s milk from apparently healthy animals were screened using the bacterial model Cromobacterium violaceum. The tested cow’s raw milk samples were able to inhibit the production of QS signalling molecules acyl-homoserine lactones (AHLs) produced by C. violaceum. However, she-camel’s milk samples were less effective in inhibiting such AHLs. Thus, one of the factors which influence the inhibitory activity could be derived from variation in milk chemical composition, especially in the percentage of fat which is significantly higher in tested cow’s milk samples (2.22±0.12) than in tested she-camel’s milk samples (1.44±0.35). Natural inhibition of QS signaling by cow’s milk may offer a unique means to control foodborne pathogens and reduce microbial spoilage.

Keywords: Quorum, Sensing, Inhibition, Cromobacterium violaceum, Milk


Journal Identifiers


eISSN: 2218-6050
print ISSN: 2226-4485