Improving traverse redundancy and precision by running on double lines
Abstract
Good redundancy is required in measured quantities to isolate gross errors and improve the qualities of derived parameters. Improving the weak redundancies of traditional traverses by traversing on double lines is now possible with total stations which provide for less cumbersome measurements than previously possible and more so now that control traverses are computed by least squares adjustment using readily available computer software. Traversing on double lines requires some care in choosing traverse stations with inter-visibility to two immediately preceding and two directly succeeding stations from the instrument station. Traverses were run on double lines resulting in redundancy increase of seven per station. Local accuracy precision parameters improved also by as much as 25% and 52% with implementation at 30% and 100% of the traverse stations respectively. A chart that may be used to determine percentage number of traverse stations where traversing on double lines would be implemented to achieve set local accuracy improvements is presented.
Keywords: traverse, redundancy, precision, total station, control surveys, traversing on double lines, gross errors
Authors who submit papers to this journal agree to the following terms:
a) Authors retain copyright over their work, while allowing the journal to place this work on the journal website under a Creative Commons Attribution License, which allows others to freely access, use, and share the work, with an acknowledgment of the work's authorship and its initial publication in this journal.
b) Authors are able to waive the terms of the CC license and enter into separate, additional contractual arrangements for the non-exclusive distribution and subsequent publication of this work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c) In addition, authors are encouraged to post and share their work online (e.g., in institutional repositories or on their website) at any point after publication on the journal website.