PROMOTING ACCESS TO AFRICAN RESEARCH

African Journal of Biotechnology

The AJOL site is currently undergoing a major upgrade, and there will temporarily be some restrictions to the available functionality.
-- Users will not be able to register or log in during this period.
-- Full text (PDF) downloads of Open Access journal articles will be available as always.
-- Full text (PDF) downloads of subscription based journal articles will NOT be available
We apologise for any inconvenience caused. Please check back soon, as we will revert to usual policy as soon as possible.





Xylanase from Fusarium heterosporum: Properties and influence of thiol compounds on xylanase activity

Paulo Ricardo Heinen, Caroline Henn, Rosane Marina Peralta, Adelar Bracht, Rita de Cássia Garcia Simão, Jose Luís da Conceição Silva, Maria de Lourdes TM Polizeli, Marina Kimiko Kadowaki

Abstract


The properties of xylanase purified from Fusarium heterosporum that was grown in barley-brewing residue under solid-state fermentation and the effects of thiol compounds on the reactivation of the metal ion-inhibited xylanase were investigated. Xylanase was purified to homogeneity by ion exchange chromatography, and its molecular mass was estimated to be 19.5 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for the xylanase was 5.0, and it was stable in acidic pH (4.5 to 5.5), where it retained more than 87% of its activity after 24 h. The optimum temperature was 50°C, and it had a half-life of 53 min at 45°C. The apparent Km and Vmax values for the xylanase were 5.63 mg/ml and 800 μmol/mg/min, respectively. Ba2+, Ca2+, Mg2+ and the thiol compounds β-mercaptoethanol and dithiothreitol (DTT) enhanced xylanase activity, while Hg2+, Pb2+ and Zn2+ strongly inhibited enzyme activity. Furthermore, this xylanase had an alternative mode of regulation in the presence of thiol compounds because the enzyme was able to recover its catalytic activity after inhibition by heavy metal ions.

Keywords: Hemicellulase, fungus, solid-state fermentation, barley brewing residue, thiol compounds

African Journal of Biotechnology, Vol. 13(9), pp. 1047-1055, 26 February, 2014



http://dx.doi.org/10.5897/AJB2013.13282
AJOL African Journals Online