African Journal of Biotechnology

The AJOL site is currently undergoing a major upgrade, and there will temporarily be some restrictions to the available functionality.
-- Users will not be able to register or log in during this period.
-- Full text (PDF) downloads of Open Access journal articles will be available as always.
-- Full text (PDF) downloads of subscription based journal articles will NOT be available
We apologise for any inconvenience caused. Please check back soon, as we will revert to usual policy as soon as possible.

A comparative study of the physicochemical properties of starches from root, tuber and cereal crops

E Nuwamanya, Y Baguma, E Wembabazi, P Rubaihayo


Some properties of starches from cassava, potato and sweet potato were compared with cereal starches from maize, wheat, millet and sorghum. The aim was to determine the properties of tuber and root crop starches and compare them with cereal starches in addition to unravelling the potential of commonly grown sorghum and millet climate resilient crops as cheap and sustainable sources of starch. Significant variations were observed for amylose content and solution properties of starches, where blue values for amylose ranged from 0.355 in potato to 0.476 in cassava, but were averagely low in cereal starches. Amylose leaching increased with temperature with the highest value (0.432) in cassava at 80°C compared with cereal starches (average 0.361). Starch amylosis increased with time of hydrolysis and was highest (>16%) for millet and sorghum and least for potato (<8.5% average). Average swelling power at 80°C was high for cassava (8.58 g/g) and potato (8.44 g/g) compared with sweet potato (6.88 g/g) and low among cereal starches (5.17 g/g). Similarly, starch solubility was low in potato (0.77 g/g) and sweet potato (0.577 g/g) compared with cassava (1.23 g/g). The paste clarity was also high for cassava (48.32%) and potato (42.16%) and least for sweet potato derived starches (23.22%) and all the cereal starches (14.97%). These properties demonstrate the untapped potential of cassava and tuber based starches for use in food and non-food applications previously dominated by cereal starches.

Key words: Tuber starch, root crop starches, cereal starches, amylose, amylosis.

AJOL African Journals Online