Main Article Content

Erodibility of soils of varying land utilization types and lithologic materials in central southeastern Nigeria


C.M. Ahukaemere
E.U. Onweremadu
F.O.R. Akamigbo

Abstract




Land use and parent materials influence behaviour of soils including responsiveness to erosion forces. The study investigated some soil properties related to erodibility in Abia and Imo States of Nigeria. Soil sampling was guided by geology and land use type. Random sampling technique was adopted in field studies. Two parent materials and three land use types were chosen for the study. In each parent material, three land use types were studied and in each land use, three soil profiles were sunk, described, and sampled using FAO procedure. Soil samples were subjected to laboratory analyses and data generated were analyzed using descriptive and inferential statistical tools. Results showed that sand sized particles ranged from 533.10 to 778.80 g kg–1 and this distribution differed significantly between parent materials. Silt content ranged from 141.70 g kg–1 in soils derived from false-bedded sandstone to 202.20 g kg–1 in shale-derived soils. Clay-sized particles ranged from 77.30 g kg–1 in soils derived from false-bedded sandstone to 264.70 g kg–1 in shale-derived soils, respectively. Water-stable aggregate ranged from 19.38% in false-bedded sandstone to 29.23% in shale-derived soils. The DR (dispersion ratio) mean values ranged between 4.26 in shale and 8.46 in false-bedded sandstone, while the CDI (clay dispersion index) mean values ranged between 2.17 in shale and 8.41 in false-bedded sandstone, respectively. The forest soils had the lowest values of both DR (6.89) and CDI (6.40) for soils of the false-bedded sandstone, 3.85 and 1.59 for those derived from shale. The clay flocculation index (CFI) had mean of 2.16 in false-bedded sandstone and 7.83 in shale. In soils of the varying land use types, the mean soil pH (H2O) ranged from 4.28 to 4.64 in soils derived from false-bedded sandstone and 4.27-5.57 in those derived from Shale. From the results, parent material and land use influenced soil erodibility parameters (water-stable aggregates, mean-weight diameter, DR, CDI, and CFI) and other soil properties such as organic carbon, bulk density, and moisture content.





Journal Identifiers


eISSN: 1119-7455