Main Article Content

Zinc(II) complex of (Z)-4-((4-nitrophenyl)amino)pent-3-en-2-one, a potential antimicrobial agent: synthesis, characterization, antimicrobial screening, DFT calculation and docking study


I. Waziri
O. O. Wahab
G. A. Mala
S. O. Oselusi
S. A. Egieyeh
H. Nasir

Abstract

ABSTRACT. Herein, the synthesis and characterizations of (Z)-4-((4-nitrophenyl)amino)pent-3-en-2-one (HL) ligand and its Zn(II) complex are reported. The compounds were characterized using elemental and thermogravimetric (TGA) analysis, electrochemical studies, FTIR, UV-Vis, 1H and 13C{H}NMR, HRMS, and PXRD techniques. Antimicrobial activity was screened on some Gram-positive and Gram-negative bacteria. DFT predictions were achieved using B3LYP, ωB97XD and M06-2X functional with 6-31+G(d,p) and LANL2DZ basis sets for nonmetallic and metallic atoms, respectively. The therapeutic potentials of the compounds were evaluated based on protein binding affinity, ADME/T and drug-likeness properties. The experimental results revealed the formation of a complex in which two ligands coordinated to the zinc ion in a tetrahedral arrangement through their carbonyl and amino groups. The antimicrobial study showed that the complex possesses higher antimicrobial activity than free ligand and the control (Streptomycin). B3LYP emerged as the best performing functional having yielded the best IR spectra and geometrical parameters relative to the experimental data. The density functional theory (DFT) predictions revealed that the complex is more active than the ligand, and its formation is thermodynamically feasible and exothermic. The docking results revealed that the binding affinities of the compounds are in agreement with the in-vitro data, and they possess drug-like properties.


 


KEY WORDS: Schiff base, Zinc complex, Antimicrobial, DFT, Docking study


 


Bull. Chem. Soc. Ethiop. 2023, 37(3), 633-651.                                                               


DOI: https://dx.doi.org/10.4314/bcse.v37i3.8


Journal Identifiers


eISSN: 1726-801X
print ISSN: 1011-3924