Generators and inner automorphism

  • Gabriel Otobong Udoaka


This paper presents the generators and computation of inner automorphism where the group of order 6 and 12 are used. The symmetry and the  dihedral group is obtained through rotation and reflection of triangle and hexagon and the permutations generated by the generators is obtained by  taking the products for order 6 and 12 respectively. The multiplication table for cyclic group will be generated and presented with it generators and  relation respectively. The multiplication table for 𝐴4, 𝐶3 × 𝐶4 , 𝐶2 × 𝐶3, 𝐶2 × 𝐶6 is used for the computation of inner automorphism of a symmetry group of  order 6 and the dihedral group of order 12 and the images is also shown.


Journal Identifiers

eISSN: 2971-6632