PROMOTING ACCESS TO AFRICAN RESEARCH

Journal of Endocrinology, Metabolism and Diabetes of South Africa

Log in or Register to get access to full text downloads.

Remember me or Register



DNA fragmentation damage as a predictive marker for diabetic nephropathy in Type II diabetes mellitus

Nourhan Soliman, Mohamed El-Shabrawi, Seham Omar

Abstract


Background: Increased production of free radicals and oxidative stress in type II diabetic patients could be one of the probable causes for development of complications. The authors hypothesise that such a mechanism also contributes to the development of diabetic nephropathy in those patients.

Aim: The aim of this study was to evaluate the association of DNA fragmentation damage with diabetic nephropathy in type II diabetes mellitus, so as to use it as a future novel predictive marker.

Patients and methods: The study population included 100 patients with diabetic nephropathy, 100 diabetic patients without nephropathy and 100 healthy volunteers as controls. Lipid profile, fasting and post-prandial blood glucose, micro-albuminuria (micro-alb) and glycosylated haemoglobin (HbA1c) were assessed in patients and controls. The technique of capillary electrophoresis was used to detect DNA damage.

Results: The frequency of DNA damage in peripheral blood mononuclear cells was 71% in diabetic nephropathy compared with 45% in non-nephropathy patients (p < 0.001). None of healthy controls showed such a finding. Oxidative DNA fragmentation in the diabetic nephropathy group was 3.06 times that in the non-nephropathy group. Neither poor glycaemic control nor dyslipidaemia contributed to DNA damage in diabetic patients. Multivariate analysis showed that positive oxidative DNA damage test (OR1.58, p = 0.02) and the duration of ongoing DM (OR 1.48, p = 0.004) were the only independent factors contributing to the occurrence of diabetic nephropathy.

Conclusion: Type II diabetic patients have more liability to oxidative DNA damage in general with a significantly higher frequency in diabetic nephropathy. DNA fragmentation analysis can be used as a predictive diagnostic biomarker for diabetic nephropathy.

Keywords: complications, diabetes, free radicals, oxidative stress




AJOL African Journals Online