AcSDKP is down-regulated in anaemia induced by Trypanosoma brucei infection in mice

  • Janelisa Musaya
  • Enock Matovu
  • Edward Senga
  • Moffat Nyirenda
  • John Chisi


Background Anaemia commonly results from destruction of erythrocytes in the peripheral blood and failure of the bone marrow haematopoietic cells to replenish the erythrocytes. The mechanisms involved in trypanosoma-induced anaemia, including the role of the bone marrow haematopoietic cells are incompletely understood. We studied the responses of a tetrapeptide, AcSDKP, and IL-10, and their association with bone marrow nucleated cells in a Trypanosoma brucei brucei GVR35 experimental infection model.
Methods Mouse infection was done intraperitoneally with 1 × 103 trypanosomes/mL. Mice were either infected or left uninfected (N = 100). At days 0, 9, 16, 23, 30, 37, and 44 post-infection, mice were euthanised and blood was collected by cardiac puncture to examine for parasitaemia and packed cell volume (PCV) and then centrifuged for plasma, which was used for cytokine ELISA. The mice’s femurs were also dissected and bone marrow was collected for femur cellularity.
Results PCV dropped from 39.6% to 27% in infected animals by day 9 and remained low (relative to uninfected mice) for the duration of the experiment. AcSDKP levels decreased from day 0 (11.5 × 104 pg/mL) to day 16 (10 × 104), and increased by day 30 (12.6 × 104). There was a significant difference at day 16 (P = 0.023) between the infected and uninfected groups. By contrast, expression of IL-10 markedly increased between day 0 (18.6 pg/mL) and day 16 (145 pg/mL) and decreased by day 30 (42.8 pg/mL). There was also a significant difference in IL-10 expression between infected and uninfected mice at day 16 (P < 0.001). Bone marrow nucleated cells were significantly reduced during periods of low plasma AcSDKP and high plasma IL-10 concentrations (5.4 × 106 infected vs 6.2 × 106 on day 0 and 4.9 × 106 infected vs 10 × 106 uninfected on day 16).
Conclusions These data unravel a possible negative feedback interaction between AcSDKP and IL-10 in trypanosome infection. More importantly, this study implicates an IL-10/AcSDKP cytokine network in the regulation of bone marrow nucleated cells and provides a new potential mechanism in the pathogenesis of trypanosoma-induced anaemia. Further mechanistic blocking experiments on AcSDKP and IL-10 are recommended to further clarify understanding of the interaction.


Journal Identifiers

eISSN: 1995-7262
print ISSN: 1995-7262